نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه صنعتی خاتم االنبیاء بهبهان، بهبهان ، خوزستان

2 2گروه مهندسی مکانیک- دانشکده مهندسی- دانشگاه شهید چمران اهواز- پردیس صنعتی شهدای هویزه، سوسنگرد

چکیده

در این پژوهش، امواج سالیتونی یون صوتی غیرخطی در یک سامانۀ پلاسمایی غباری شامل ذرات غبار زمینه با بار منفی، یون­های داغ دینامیکی، الکترون‌ها و پوزیترون‌ها با توزیع­‌های غیر گرمایی کارنز (Cairns distributions) بررسی شده است. با استفاده از روش اختلال کاهنده، معادلۀ دیفرانسیل غیرخطی حاکم بر این سامانه در دو مرحله به‌دست آورده شده است. در مرحلۀ اول با درنظر گرفتن توان­های مرتبۀ پایین‌تر یک معادلۀ دیفرانسیل غیرخطی، KdV به‌دست می‌آید. نتایج حاصل نشان می­دهد که در سامانۀ مورد نظر به ازای مقدار بحرانی ، ضریب غیرخطی معادلۀ مذکور صفر می­شود و این معادله نمی­تواند انتشار امواج سالیتونی در سامانه را توصیف کند. بنابراین در مرحلۀ بعد با در نظر گرفتن توان­های مرتبۀ بالاتر معادلۀ دیفرانیسل کورته وگ دی وری اصلاح شده را همانند بخش قبل با استفاده از روش اختلال کاهنده به‌دست می­آوریم. مطالعات انجام شده نشان می­دهد که ضرایب پاشندگی در هر دو حالت یکسان است؛ ولی ضریب غیرخطی برای حالت اصلاح شده اندکی پیچیده‌تر است. در هر دو حالت جواب­های ایستایی امواج سالیتونی بررسی شده­اند­ و تأثیر پارامترهای مختلف از جمله پارامتر غیرتعادلی برای الکترون­ها و پوزیترون­ها روی ساختار موج با جزئیات دقیق مورد بررسی قرار گرفته است. نتایج نشان می­دهد که هردو سالیتون مثبت و منفی می­توانند در این سامانه منتشر شوند؛ برخلاف توزیع ماکسولی که فقط سالیتون­های مثبت قابل انتشارند. همچنین حضور ذرات غیر تعادلی باعث افزایش دامنه و پهنای موج سالیتونی می­شود. از نتایج این تحقیق می­توان در سامانه­های پلاسمای فضایی و آزمایشگاهی استفاده کرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating ion acoustic waves in dusty plasmas containing hot ions, electrons and non-thermal positrons with Cairns distribution

نویسندگان [English]

  • Mohammad Eghbali 1
  • Mina Eslamifar 1
  • Neda Pouyan 2

1 Department of physics, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

2 Department of Mechanical Engineering, University of Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, P.O. Box 64418-78986, Susangerd, Iran

چکیده [English]

This study investigated nonlinear ion acoustic solitons in a dusty plasma system, consisting of negatively charged dust particles, dynamic warms ions, electrons and positrons with non-thermal Cairns distributions. The nonlinear differential equation governing this system was obtained in two steps using the reductive perturbation method. In the first step, the nonlinear differential equation KdV was obtained considering lower-order exponents. The results showed the nonlinear coefficient of the mentioned equation was zero at the critical value  in the desired system and this equation could not describe the solitons propagated in the system. In the next step, the modified KdV equation was obtained like the previous section using the reductive perturbation method, concerning higher-order exponents. The results showed scattering coefficients were the same in both cases. However, the nonlinear coefficient was a little more complicated in the modified case. In both cases, static solutions of solitons were investigated, and the effect of various parameters, including a non-equilibrium of electrons and positrons, on the wave structure was examined in detail. The results revealed unlike Maxwell’s distribution, in which only positive solitons could be propagated, both positive and negative solitons could be propagated in this system. Also, the presence of non-equilibrium particles could increase the soliton amplitude and width. The obtained results could be used in space and laboratory plasma systems.

کلیدواژه‌ها [English]

  • ion-acoustic waves
  • electron-positron-ion-dust plasma(EPID)
  • Cairns distribution
  • non-thermal plasma
  1. H R Miller, P J Witter, “Active Galactic Nuclei”, Springer, New York. (1987) 202.
  2. F C Michel, Mod. Phys. 54 (1982)1.

https://doi.org/10.1103/RevModPhys.54.1

  1. P Goldreich and W H Julian, J. 157 (1969) 869.

https://doi.org/10.1086/150119

  1. E Tandberg-Hansen and A G Emslie, “The Physics of Solar Flares”, Cambridge University Press, Cambridge(1988).
  2. V S Beskin, A V Gurevich, and N Ya, “Istomin, Physics of Pulsar Magnetosphere”, Cambridge Univ. Press UK. (1993).
  3. M Adnan, S Mahmood, and A Qamar, . Plasmas. (2014) 092119.
  4. G Gahn, G D Tsakiris, G Pretzler, K J Witte, C Delfin, C G Wahlstrom, and D Habs, Phys. Lett. 77 (2000) 2662.
  5. A Mushtaq and H A Shah, Plasmas. 12 (2005) 012301.
  6. C M Surko, M Leventhal, W S Crane, A Passner, F Wysocki, T J Murphy, J Strachan, and W L Rowan, Sci. Instrum. 57 (1986)1862.

https://doi.org/10.1063/1.1139154

  1. G Sarri, W Schumaker, A Di Piazza, M Vargas, B Dromey, M E Dieckmann, V Chvykov, A Maksimchuk, V Yanovsky, ZH He, B X Hou, J A Nees, A. G R Thomas, C H Keitel, M Zepf, and K Krushelnick, Rev. Lett. 110 (2013)255002.

https://doi.org/10.1103/PhysRevLett.110.255002

  1. AA Mamun and PK Shukla, Res. Lett. 29 (2002) 1870.
  2. M Tribeche, and A Merriche, Plasmas. 18 (2011) 033706.
  3. W M Moslem, Lett. A 351 (2006) 290.
  4. B Tian and YT Gao, Plasmas. 12 (2005) 054701.
  5. A Barkan, N D’Angelo, and R Merlino, Space Sci. 44 (1996) 239.
  6. S A El-Tantawy, N.A. El-Bedwehy, and WM Moslem, Plasmas. 18 (2011) 052113.
  7. S Ghosh, and R Bharuthram, Space Sci. 314 (2008) 121.
  8. P K Shukla and V P Silin, Physica Scripta. 45 (1992) 508.

https://doi.org/10.1088/0031-8949/45/5/015

  1. M Tribeche, K Aoutou, S Younsi, and R Amour, Physics of Plasmas (2009) 072103.

https://doi.org/10.1063/1.3160619

  1. O R Rufai, R Bharuthram, S V Singh, and G S Lakhina, Advances in Space Research (2016) 813.

https://doi.org/10.1016/j.asr.2015.11.021

  1. H Washimi, T Taniuti, Phys Rev Lett. 17 (1966) 996.

https://doi.org/10.1103/PhysRevLett.17.996

  1. T D Kaladze, M Shad, L V Tsamalashvili, Plasmas 17(2010) 022304.

https://doi.org/10.1063/1.3313359

  1. M Khalid, A Ullah, A Khan Kabir, H M Irshad, and S Shah, Europhysics Letters138(2022) 6.

https://doi.org/10.1209/0295-5075/ac765c

  1. S Mahmood and N khtar, Phys. J. D. 49(2008)217

https://doi.org/10.1140/epjd/e2008-00165-4

  1. S Mahmood, A Mushtaq, and H Saleem, New J. Phys. 5(2003) 28.

https://doi.org/10.1088/1367-2630/5/1/328

  1. P K Shukla, A A Mamun, and L Stenflo, Physica Scr. 68 (2003) 295.

https://doi.org/10.1238/Physica.Regular.068a00295

  1. N Jehan, M Salahuddin, H Saleem, and A M Mirza, “ Plasmas. 15 (2008) 092301.

https://doi.org/10.1063/1.2977768

  1. S Mahmood, S Siddiqui, and N Jehan, Plasmas. 18, (2011)052309.

https://doi.org/10.1063/1.3590869

  1. A Shahrina, and M G Hafez, Rep. 12(2022) 6453.

https://doi.org/10.1038/s41598-022-10236-6

  1. H R Pakzad, Astrophys Space Sci. 332(2011) 269.

https://doi.org/10.1007/s10509-010-0533-5

  1. H Alinejad, “Astrophys Space Sci. 325 (2010) 209.

https://doi.org/10.1007/s10509-009-0177-5

  1. K Javidan, and D Saadatmand, Astrophys Space Sci. 333(2011) 471.

https://doi.org/10.1007/s10509-011-0645-6

  1. F Farhadkiyaei and D Dorranian, Plasma Phys. 58 (2018) 42.

https://doi.org/10.1002/ctpp.201600076

  1. Q Haque and H Saleem, Phys. Plasmas 10(2003)3793.

https://doi.org/10.1063/1.1602073

  1. R Bostrom, IEEE Trans Plasma Sci. 20 (1992)756.

https://doi.org/10.1109/27.199524

  1. P Dovner, E rikson, R Bostrom, and B Holback, Geophys Res Lett. 21(1994) 1827.
  2. A Saha and P Chatterjee, Astrophys Space Sci. 350 (2014) 631.

https://doi.org/10.1007/s10509-014-1796-z

  1. M Khalid, A Khan, M Khan, F Hadi, and Ata-ur-Rahman, Brazilian Journal of Physics. 51 (2021) 60.

https://doi.org/10.1007/s13538-020-00807-1

  1. M M Masud, M Asaduzzaman, and A A Mamun, “ Plasmas 19(2012)103706.

https://doi.org/10.1063/1.4753922

  1. K B Zhang and H Y Wang, Korean Phys. Soc. 55(2009)1461.

https://doi.org/10.3938/jkps.55.1461

  1. S T Shuchy, A Mannan, A A Mamun, JETP Lett. 95 (2012) 310.

https://doi.org/10.1134/S0021364012060094

ارتقاء امنیت وب با وف ایرانی