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Abstract 
This work aims to use an important method Galitskii-Migdal-Feynman (GMF) for diatomic molecules 132Xe2, to calculate the 
effective phase shifts which are then used to compute the effective total and viscosity cross sections at low density and temperature . 
this study has shown that it’s crucial to include partial waves up to 14 ; for 14 , the effect of the potential becomes 
negligible . Comparing with partial waves cross sections we deduce that the cross section is dominated by S-wave scattering for low 
energy (wave number k < 0.1 Å-1), otherwise D and G partial waves dominate . The highest peak rises from the partial effective D 
and G-wave resonance, where the system sustains a quasi-bound state trapped by the 2 , 4 centrifugal barrier. The average 
cross section is also determined. 
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1. Introduction  
This research sheds light on scattering properties of 
132Xe gas for 165K and 275K temperatures within a 
generalized scattering framework; based on the Galitskii-
Migdal–Feynman (GMF) formalism [1]. The GMF 
formalism was firstly improved for the Fermions many-
body systems and then extend to the many body Bose 
systems [2, 3, 4]. The most significant of this research 
that it's built from the initial basic concepts a 
complementary microscopic assumption for xenon dimer 
(132Xe) gas system, using GMF method with interatomic 
pair potential as the main input. However there are many 
studies on scattering other spices with xenon such as 
electron xenon scattering cross section [5, 6], proton 
xenon scattering cross section [7] , and neutron xenon 
scattering cross section[8], but studies on neutral xenon 
particle are rare [9, 10] scattering properties. This study 
is a unique one not only for integrated microscopic 
assumptions used for the first time on xenon but also for 
its specified small range in temperature and momentum 
where quantum interactions and resonance appear.  

We first use a matrix-inversion technique to solve 
GMF integral equation and then compute the effective 
relevant phase shifts in the medium (which is the most 
important GMF processing product) in order to 

investigate the effective 132Xe -132Xe cross sections. The 
basic input used is the acclaimed interatomic xenon 
potential, namely, HFD-B2 [11] which is considered the 
closest to the actual 132Xe -132Xe potential. 
Several potentials suggested approaching the actual 
xenon potential and other rare gasses [12]. Pade 
Approximants used to determine upper and lower 
bounds to the Van der Waals C6, C8 and C10 coefficient 
of noble gasses[13], krypton and xenon have been 
simulated using several potentials [14]. For xenon the 
semi-empirical gives more acceptable results comparing 
with experimental ones.  

Molecular dynamics were used to study the transport 
properties of Bose gasses (such as Ne, Ar, Kr and Xe) 
and the results agree well with experimental results [15]. 

Absolute total elastic cross sections for Xe-Xe 
collisions have been computed for collision energies 
from 0.01 eV to 10 keV [16]. This result implements the 
information previously obtained from the Xe2 interaction 
potential.  

The rest of the paper is organized as follows. Section 
2 presents the material and method. The results of 
effective cross sections properties are performed and 
shown in Section 3. Finally, in Section 4, the paper is 
concluded with some closing remarks.  
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2. Material and method 
Natural units are used such that; m of xenon (m = 131.3 

au, m*=0.68m)[17]; Bk ,   (= 2/h ). The conversion 

factor is 
2

0.5404 
2m




K.Å2. (1) 

 
2.1 GMF T-matrix 

The first step is to determine E
  by solving the GMF 

integral equation, using a matrix-inversion technique. 
The GMF formalism will be summarized shortly such 
that the quantities used are defined for reference 
purposes, since it is described briefly elsewhere [18, 19]. 
The GMF T-matrix is the main significant quantity in 
this formalism which really transformed the effective 
interaction of two-body into momentum space. 
Otherwise, it can be expressed as generalized scattering 
amplitude or a ‘dressed’ Lippmann-Schwinger t-matrix 
(which describes two-body scattering in free space). It is 
given by [19, 2Error! Bookmark not defined.] 
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Here:  

The operator 
2

2 1

2
rm V

u V 


[in natural units], 

1

2rm m  for 132Xe interacting pair, V the Fourier 

transform of a static central two-body potential, V(r). 
The parameter s  is given by  

2
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where P0 is the total energy of the pair, P2 is the energy 
carried by the center of mass.  

The input single-particle energy spectrum can be 

approximated by the free-particle energy  
2 2

2

k
k

m
 


; 

so [in natural units] 
2k   (4) 

To be more precise, this approximation is valid for the 
ideal gas only. The implication is that the so-called ‘self-
energy insertion’ is neglected here. The incorporation of 
this insertion into our framework would necessitate a 
rather lengthy self-consistent calculation.  

The effective phase shifts  ; ,E p P   can be 

determined by parameterizing the on- energy-shell T-
matrix as follows: 
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 Im ; ;T p P   and  Re ; ;T p P   denote, 

respectively, the imaginary and real parts of 
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 where  Q Q  is the related to the probabilities of a 

transition into (out of) states k P
 

 and k P
 

; 

these operators are given by [20, 21]. 
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, (9) 

V(r) used as the HFD-B2 potential [11], which is 
generally preferred as the most reliable potential formula 
of Xe-Xe interaction. This is given by 
   V r V x   (10) 

Where, 
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is the free Green's function,   being a positive 

infinitesimal in the scattering region and zero otherwise. 
 
2.2 Effective cross sections  
The effective total T and viscosity  cross sections for 

our many-bosonic system are given by  
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Figure 1. The effective total cross section T [Å2] for 132Xe-
132Xe scattering as a function of relative momentum k [Å-1] at 
temperature T = 165 K for different number densities n 

 
Figure 2. The effective viscosity cross section  [Å2] 

for 132Xe-132Xe scattering as a function of relative 
momentum k [Å-1] at temperature T = 165 K for two 
different number densities n 

 

 
Figure 3. The effective total cross section T [Å2] for 132Xe-
132Xe scattering as a function of relative momentum k [Å-1] at 
temperature T = 165 K and 275 K for number density n = 5× 
1029 atoms/m3 

 
 Figure 4. The effective viscosity cross section  [Å2] for 132Xe-

132Xe scattering as a function of relative momentum k [Å-1] at 
temperature T = 165 K and 275 K for number density n= 5×1029 

atoms/m3 

 
3. RESULTS AND DISCUSSION 
3.1 Effective total and viscosity cross sections 
To calculate the  -sums in Eqs. (14) and (15) to an 
accuracy of 0.5% or better, then partial waves up to 

14  needed to include; for 14 , the effect of the 
potential becomes negligible, high respect to the 
repulsive longer-range angular-momentum barrier 

~
2

( 1)

r

 
.  

Figs. 1-5 and Tables 1-3 describe briefly our results. The 
velocity v1[m/s] of a projectile atom (v1= constant × k) 
as a function of k [Å-1], presents the upper scale in the 
figures. Whereas the constant is 14.15Å.m/s, and the 
target atom is at rest (v2=0).  

Figures 1 and 2 show T  and   for 132Xe-132Xe 

scattering as functions of k at T = 165 K for different 
number densities n. It is noted that the effective cross 
sections for high n are less than for low n in the limit 
k0: As n increases, quantum effects become more 
pronounced since the particles come closer to each other; 
so the effective scattering cross sections decrease. For 
high k, the cross sections are independent of n because 
of the overall repulsive effects. This is because, for high 
k (corresponding to the atoms coming closer to each 
other), the short-range part of the interaction dominates. 
Figures 3 and 4 represent T  and   as functions of k 

at n = 5 × 1029 atoms/m3 for two different T. It is clear 
that the effective cross sections at high T are larger than  
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Figure 5. The  -wave effective cross sections  [Å2] for 0,  2 , 4, 6, 8 and the effective total cross section T [Å2] for 132Xe-
132Xe scattering as functions of relative momentum k [Å-1] for number density n= 1× 1021 atoms/m3, using the HFD-B2 potential. The 

upper scale [m/s] represents the corresponding velocity v1 of a projectile atom on a stationary target atom 
  

 
Figure 6. The average effective total cross section T  [Å2] 

for 132Xe-132Xe scattering as a function of temperature T for 
two different number densities n 

 
Figure 7. The average effective viscosity cross section   

[Å2] for 132Xe-132Xe scattering as a function of temperature T 
for two different number densities n 

 
for low T in the limit k0 because of the overall 
disruptive effects of T. With increasing T, the atoms hop 
away from each other; in the limit k0, the long-range 
part of the interaction dominates.  

Figure 5 shows the behavior of T  and   

( 0 , 2 , 4, 6, 8) as a function of k at number density 
211 10n    atoms/m3. The odd partial waves canceled 

in Bose-Einstein statistics [22] For k  0.1 Å-1, the
 

0 dominates. As k increases, the higher partial waves 

contribution of the scattering increases, especially the D 
and G-waves ( 2, 4) .

 0  shows decreasing with 

increasing k (increasing energy); but the higher partial-
waves contribute against this decrease, the most distinct 
being the D-wave. 2  and 4  initially increases with k> 

zero before passing through a maximum, and then tend 
to decrease. The peak in T arises mainly from 2 , 

and 4 which referrers to a quasi-bound state trapped by 

the 2 , 4  angular-momentum barriers; this 

resonance occurs at k ~ 0.15188 Å-1 (for 211 10n    
atoms/m3). Other peaks are very small; so their 
resonance contribution is negligible. Table 1 displays the 

relative momentum kr, and T at the resonance peaks. 
Table 2 displays the Ramsauer Townsend effect [22] 
where T  is a minimum; so that the atoms propagate 

through the medium almost freely.  
The effective S-wave scattering length ao, T(0), and 

(0) were also calculated, as shown in Table 3. These 
are consistent with the values obtained from the well-
known sum rules in the low T limit, where only small 
values of v1 are important: 

  2

0
8T o

k
k a 


 ; (16) 

  2

0

16

3 o
k

k a 

 .  (17) 

The average effective total cross section and average 
effective viscosity cross section are given by [23] 

( / )( 1)

0

( ) ( ) .
E K Tp PK T E E e dE

 


      (18) 

When p = 1, this gives T ; but for p = 3,   is 

obtained.  
Figures 6 and 7 indicate that

 T decreases with T, but  
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Table. 1 The relative momentum kr and total scattering cross section T at the resonance peaks 
ℓ kr[Å-1] T (kr) [Å2] 
0 0.04702 05.782×103 

2,4 0.15188 13.462×103 

6,8 0.31454 08.370 ×103 

 
Table. 2 The Ramsauer Townsend relative momentum kmin and total scattering cross section T 

ℓ kmin[Å-1] T (kmin) [Å2] 
0 0.09815 04.010×103 

4 0.44909 02.130 ×103 

 
Table. 3 The effective S-wave scattering length ao[Å], T(0) [Å2] and (0) [Å2] 

ao[Å] T(0) [Å2]   2

0
8T o

k
k a 


 [Å2] (0) [Å2]   2

0

16

3 o
k

k a 

 [Å2] 

9.3809 2211.6 2211.7 1474.4 1474.5 
 

do not show a tangible change with n; while   

shows such a change for high n; thus because T  

depends particularly on particle energies while 

 depends on the transport angular momentum that is 

precisely affected by density.  
 
4 . Conclusion 
In this paper, extensive results for the effective total, 
viscosity and average cross sections for 132Xe-132Xe 
scattering in xenon gas are presented for temperatures 

165K and 275 K. The calculations were based on the 
effective phase shifts determined within the GMF 
formalism. The resonance peaks energy is calculated and 
shows that the greatest demonstrate on T  comes from 

S-wave, while the other peaks come from D, G- waves. 
Ramsauer Townsend effect also displayed. 
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