Isfahan University of Technology, The Physics Society of Iran Iranian Journal of Physics Research 1682-6957 21 4 2022 02 20 Systematic study of the fusion hindrance phenomenon using the proximity potential approach: signature of the energy-dependent effects of the surface energy coefficient Systematic study of the fusion hindrance phenomenon using the proximity potential approach: signature of the energy-dependent effects of the surface energy coefficient 619 633 1738 10.47176/ijpr.21.4.01135 FA R Gharaei Department of Physics, Sciences Faculty, Hakim Sabzevari University, Sabzevar, Khorasan Razavi, Iran. 0000-0003-2256-0028 B Azadegan Department of Physics, Sciences Faculty, Hakim Sabzevari University, Sabzevar, Khorasan Razavi, Iran. A Fuji Department of Physics, Sciences Faculty, Hakim Sabzevari University, Sabzevar, Khorasan Razavi, Iran. A A Mowlavi Department of Physics, Sciences Faculty, Hakim Sabzevari University, Sabzevar, Khorasan Razavi, Iran. Journal Article 2020 10 11 In the present study, we have systematically studied the role of surface energy coefficient as well as temperature dependence in the fusion hindrance phenomenon of the heavy-ion reactions using the proximity potential formalism. To this end, we have performed the calculations of the interaction potential using the original proximity potential 1977 (Prox. 77) and the fusion cross sections are calculated based on the coupled-channels (CC) approach. The considered fusion systems are including the heavy-ion reactions <sup>11</sup>B+<sup>197</sup>Au, <sup>12</sup>C+<sup>198</sup>Pt, <sup>16</sup>O+<sup>208</sup>Pb, <sup>28</sup>Si + <sup>64</sup>Ni, <sup>28</sup>Si + <sup>94</sup>Mo, <sup>58</sup>Ni+<sup>58</sup>Ni, <sup>32</sup>S+<sup>89</sup>Y,<sup>34</sup>S+<sup>89</sup>Y, <sup>12</sup>C+<sup>204</sup>Pb and <sup>36</sup>S + <sup>64</sup>Ni with conditions of Q <0 and charge product of the participant nuclei 392≤ Z<sub>1</sub>Z<sub>2</sub> ≤784. Our preliminary calculations show the Prox. 77 model predicts the theoretical values ​​of the fusion cross-sections less than the corresponding experimental data especially in the energy regions below the fusion barrier. However, the imposing of the mentioned physical effects increases the calculated values of the fusion cross sections and thus improves their agreement with the experimental cross sections for the selected reactions. In addition, by considering the energy dependence on the surface energy constant γ<sub>0</sub> of the proximity formalism at the low energy region we are able to reproduce well the fusion cross sections, the astrophysical factor S(E) as well as the logarithmic derivative L(E) in these regions.‎ In the present study, we have systematically studied the role of surface energy coefficient as well as temperature dependence in the fusion hindrance phenomenon of the heavy-ion reactions using the proximity potential formalism. To this end, we have performed the calculations of the interaction potential using the original proximity potential 1977 (Prox. 77) and the fusion cross sections are calculated based on the coupled-channels (CC) approach. The considered fusion systems are including the heavy-ion reactions <sup>11</sup>B+<sup>197</sup>Au, <sup>12</sup>C+<sup>198</sup>Pt, <sup>16</sup>O+<sup>208</sup>Pb, <sup>28</sup>Si + <sup>64</sup>Ni, <sup>28</sup>Si + <sup>94</sup>Mo, <sup>58</sup>Ni+<sup>58</sup>Ni, <sup>32</sup>S+<sup>89</sup>Y,<sup>34</sup>S+<sup>89</sup>Y, <sup>12</sup>C+<sup>204</sup>Pb and <sup>36</sup>S + <sup>64</sup>Ni with conditions of Q <0 and charge product of the participant nuclei 392≤ Z<sub>1</sub>Z<sub>2</sub> ≤784. Our preliminary calculations show the Prox. 77 model predicts the theoretical values ​​of the fusion cross-sections less than the corresponding experimental data especially in the energy regions below the fusion barrier. However, the imposing of the mentioned physical effects increases the calculated values of the fusion cross sections and thus improves their agreement with the experimental cross sections for the selected reactions. In addition, by considering the energy dependence on the surface energy constant γ<sub>0</sub> of the proximity formalism at the low energy region we are able to reproduce well the fusion cross sections, the astrophysical factor S(E) as well as the logarithmic derivative L(E) in these regions.‎ Heavy-ion fusion reactions Fusion hindrance phenomenon proximity potential Coupled-channels calculations Surface energy coefficient https://ijpr.iut.ac.ir/article_1738_332a2f63ddc004d4dcddefc3b0f64779.pdf