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Abstract

Modular invarinat, constraints the spectrum of the theory. Using the medum temprature expansion, for first and third order of
derivative, a universal upper bound on the lowest primary field has been obtained in recent researches. In this paper, we will
improve the upper bound, on the scaling dimension of the lowest primary field. We use by the medium temprature expansion for an
arbitrary order of derivatives. We show that the upper bound depends on the order of derivative. In this research, we obtain the

optimal values of the order of derivatives which leads to the best upper bound.
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1. Introduction

One of the important issues in Conformal Field Theory
(CFT) is fixing the theory without relying on the
Lagrangian. This is the subject of Bootstrap project [1, 2, 3].
Using the constraints and symmetries which are imposed on
the theory, the universal feature will be revealed.

Crossing symmetry is one of the constraints imposed
on CFT. By decomposition of the four-point function
into the conformal block [4, 5], and using the crossing
symmetry in four dimensional CFT, an upper bound on
the weights of the fields has been obtained [6-10], that
appears in the operator product expansion of two scalar
operators. Similarly, a lower bound on the stress tensor
central charge has been obtained [11, 12].

In two-dimension, beside the crossing symmetry, the
modular invariance is also a powerful constraint that
helps us to know much more about the density of states
and the spectrum of the theory. The disconnected
diffeomorphism group of the torus is a modular
group PSL(2,7Z) :
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where 7 =7 +ir, is the complex structure which lies in

the upper half plane (75 >0), and 7 =77 —ir,. The

generators of the modular group are

T=(r,7)> (t+1,7+1),and S = (r,?)ﬁ[—l,—éj:
T T

[0 —1j @
S = .
1 0
Since the partition function depends only on the conformal
structure 7 and7 ; therefore, it must be invariant under
modular transformations. From invariance of partition
function under T transformation, we can see that the
difference between left and right conformal dimension is
integer and the difference between left and right central
charges is multiple of 24 . The invariance under §
transformation is a more powerful constraint and leads to
the set of constraints on the density of states [13-15] and the
spectrum of the theory [16-25].

Recently, using the modular invariance of partition
function, an upper bound on the scaling dimension of
primary fields has been obtained. For holomorphically
factorizable partition function with c¢;,cp €24Z, the

holomorphic and antiholomorphic partition functions are
modular invariant. In this class of CFT, the lowest
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primary field is left moving or right moving, bounded
from above as follows:

A<min| L1, SR 41, 3)
24 24

In Hellerman [16] study, considering S invariance of
.. . . 1

partition function at the self-dual point 7=—-—=i, an
T

interesting set of constraints on the partition function has
been obtained. In Hellerman [16], by considering the
neighborhood of 7=-7 =i

T=le’,

- “
T=—ie"

and taking the derivatives of the S invariance constraint
of partition function at s =0:
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a set of constraints on the partition function is obtained
as follows

Ny N,
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which is called medium temperature expansion.

Using the medium temperature expansion in CFT
with ¢;,cp >1, an upper bound on the lowest primary

field is obtained as follows [24]

A< St L0 4755,
12 7

Ciot = Cf, +CR.
It was shown that for any primary fields with conformal
7ot

dimension A, with n<e 12" the similar bound has been

obtained in the large central charge limit [22]. The bound in
the holomorphically factorizable case (5), is a factor of two
lower bounds than the bound in the general case (6). Similar
to the holomorphically factrorizable case, in special class of
(2, 2) supersymmetric theories in the large central charge
limit, the similar bound has been obtained [26]. Therefore,
one suspects that the bound (6) can be improved. Using the
medium temperature expansion method and S7 invariance
of partition function, it was shown that the upper bound on
the primary fields with even spins has been improved by a
factor of 2 [23].

The linear functional method in the large central charge
limit is used in order to improve the bound (6) as follows

<ct_0t11 2

< —_—t 8
12 6 2r 27 _q ®

In obtaining the bounds (6) and (7), the first and third
order derivatives of partition function have been applied
in the canonical ensemble.

In this work, in order to improve the upper bound, we
used the medium temperature expansion in the grand
canonical ensemble for an arbitrary value of N;,Np.

Using this constraint, we showed that by increasing the
order of derivative, a better upper bound is obtained.
However, the order of derivative cannot be increased
arbitrarily. There are some constraints about derivatives.
We obtained the optimal values of the derivatives, which
led to the better upper bound:
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This paper is organized as follows. In section 2, we
investigate the partition function of the CFTs with
crcg >1. In section 3, we use the medium temperature
expansion for an arbitrary value of N;,Npin the grand

canonical ensemble. We obtain the optimal values of the
derivatives, which leads to a better upper bound. In section 4,
we review our results and draw our conclusions. Finally, in
appendices, we presented the details of some computations.

2. Decomposition of partition function
The partition function of a general unitary two-

dimensional CFT on a torus with complex structure

T =7 +i7ry can be written as follows

2izr(L, 7;—2) fsz(fof;—’*
e

Z(T,?)=Tr(e 4 ):

_ 2i7rr(h—c—L) _2iﬁf(ﬁ_i) (10)
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where ¢; and cp are left and right central charges

respectively. Lgand ZO are zeroth left-moving and

right-moving operators with cigenvalues /7 and /

which satisfy Virasoro algebra:
Ly.Ly]= Lypen +—L (m® = m)3, 11
(Ly,Ly]=(m—n) m+n+E(m —m) 'm,—n > (11)

(L,,,L,]1=(m—n)L (12)

C 3
mtn +£(m —m)0,

m,—n*

The Hilbert space of CFT; state is characterized by the
weight of the primary fields of the theory. The effect of
L, with n<0 on the highest weight state (which
corresponds to primary operator) creates descendants of
a primary field. For ¢; >1 and 4 =0, and for any set of
n;with n >ny, >--->n, 21, these states are linearly
independent:
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LyL Ly |0) (13)
For ¢, >1,and 2 =0 _the linearly independent states are
given by

Loyl Ly |0) (14)

where n >n, >--->n >2. Therefore, in the partition

function, we separate the contribution of identity from
other primary operators

2(,7)=2" (., 7)+ Y 24, 7), (15)
A

where the sum is over all the primary operators except the
identity operator. For CFT, with ¢;,cp >1, the partition
function can be written in terms of Virasoro character

29D (.7 = 10(D 7o) . (16)
Z4@. D) = 2, O 75 (D) (17
with
1-9)(1-¢) 5 _ —
(=g ZQ)q FogFo 7 =0.h=0,
[n(7)]
(1—q)2 —h—-Ey h-E, h>0.h=0,
— o |In@]
YAGrAGE 1-7) iz 3
LG h=0.n>0,
[n(7)|
! cq" Fogh B s 0.n>0.
[n(7)|
(18)
Therefore, we can write the characters as follows
qh+Eo s
xn(7)= = A-q™,
7 (19)
g™
Xo(m)=(1-9) ,
n(7)

‘ - 1=
where q:e2mr, Ey = , Ey= ZZR and 7(7) is

Dedekind eta function.

3. Universal upper bound on the lowest primary field
Using the decomposition of partition function (eq. 14),
we rewrite the medium temperature expansion (eq. 5), in
the useful configuration as follows

oV (- oV e 4 -
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In order to use this constraint, first the derivatives of

T=+i (20)

zA (z,7) are taken as:
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(TEJ Z°(1,7)
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where g(N )(h) is a polynomial, which is defined as

=i~
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follows

N
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In what follows, it will be convenient to write the

=DV g M+ Ep ). (22)

polynomial g(N ) (h) as follows

N
g = D" 40,0
"= (23)

where A](VN) (i)=1, and the other A](VN) (i)s can be
obtained from the recursion formula as follows

p) A(N -1)
AN @) =r—
or

—(n+1)

or n(r) 27T

A LN N

The details of the calculation are mentioned in Appendix A.

[12 o, (2mr>2e2””J .

It is easy to solve these recursion formula. AI(\,A?I (r) and

A](v]\i )2 (r) are given by
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Using egs. (15) and (20), one can take the derivative of
7D (¢ 7y
N
2z -
or (26)

D"V g™ (E9) 20 () 20 (D).
Inserting eqs. (20) and (25) into eq. (19) yields:
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where, A, 2 A >AY
n ==l >

27294.0%% 0 (34)

Ay=(1—e ) That, (28) alln>0,

Subtracting both sides of eq. (26) results to we verify that
(Np) Ng) 7 % = G(A,,j,) >0,

z{g L, +Eg)g" R iy + Ey) -Gy By By all(nn>JOn) (35)

o0 ' 4 _ _ .
> g(NL)(hB+E0)g(NR)(hB+E0)ABe 2 p
B=1
g(Ni)(hA +E0)g(N}3)(;IA +EO)}AA6_27[AA

=0.
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B=1

(29)

In the following, we assume c; =cp =c. In order to

proceed, we write the conformal weight 4 and / in
terms of the scaling dimension A, and the spin j:

A=h+h,
j=h-h.
Therefore, eq. (28) can be written as follows

(30

o0

. -2
ZG(AA’JA)AAe 4
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where,

G(A ) =gN(a+ )12+ Ey)g™®
(A= )2+ E)eg VD (Epe M (Ey)  (32)
— (N <> N;,Np <> Np).

Since G(A,j) is an odd function of A, it has at least one

real root. G(A,j) is a function of A and ;. In unitary
CFT, from h>o0 and h =0, we conclude —A<Lj<A.
Therefore, the roots of G(A,j) depends on the value of
spin. Let us denote the largest real root of G(A,j) for
j=O1) by A and for j=~@O(A) byA . In the limit
of A >0,
A >max(A",A"), the function G(A,j) is positive. We
show in Appendix B that max(A*,A")=A’. Therefore,
for A>A", G(A,)) is positive.

Now, suppose that in eq. (30):

0=Ag <A SAySA3<- (33)
Hence, from

G(A,j) goes to infinity, therefore, for

Now, suppose that A'is the largest real root of

Vi (A;—] +E0jgNR (A;J +E0]:O' Similarly, for

T+
A, 2A >A, (36)
alln>0,
we have
(At (A, — ]
gNL n ]n+EO gNR n ]n+EO >0
2 2 (37)

alln > 0.

Consequently, for A; > max(AJr,AJr) , every terms in the

numerator and denominator of the right hand side of eq.
(30) are positive. It is in contrast with the left hand side

of eq. (30). Thus, the hypothesis A; >max(A*,A") is
not true and we can conclude that
A; <max(AT,A). (38)

3.1. Behaviour of A" in large central charge limit

Let us consider A" as the largest real root of

G(a,j=0)= g™ (A7 2+ Eg)g™™
(a/2+E)g ™ (E)g ™ (B  (39)

In the large central charge limit, we can expand it as

follows [16]

A =Ys, (Ej . (40)

i=—1

Let us assume that the derivative of order N, is of the

ay
order of (éj , where aj <1. From eq. (23) we can

show that
AN, ()= N*" +O(N>", (41)

Inserting the expansion of A* (eq. 38), and based on the
definition of Ein terms of ¢ in eq. (22) as well as using the

A A" 1
expansion of | 27(—+Ej) ———
2 4 27 _

272'5;!,0

N-n
] in terms of

¢, we can verify that to leading order in ¢ we have

At u N-n( 7c
gn (5 +Eg) = nz_o(51 -1) (Ej

c N—n+2noy+ay—1
+ O(—j .

N-n+2noy

(42)

12
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1 A
For ay = > gn (3+E0) can be expanded to arbitrary
. 1 A
order in cand for ay < > gN(5+E0) can be

. 1
expanded to arbitrary order in —. Therefore, we assume
c

that
1
oy < 5 . (43)
Plugging eq. (38) to eq. (37) leads to the expansion of
G(A,j=0) to arbitrary order in l To leading order in
c

¢ we have

( ¢ JNL+NR+Ni+N}e
12 (44)

[ =@ =) g (g )N <o,

The real solutions of this equation are & =0,1,2. & is
the largest real root of the above equation, so d; =2 . By
fixing o, =2 and keeping the terms in eq. (37) up to

N, +Ng+N;+Np-1

order ¢ , 0p can be obtained as follows

NN NZ NG 1

0~ ’ ’
27[(NL+NR—NL—NR) 6 (45)
1 2(1+6a0)
—_—
2 ezzr_l
Suppose that
ay
c
N; =0| — R
t (12)
ay
c
Np=0| — R
v=ol )
(46)

ay
c
Ny =0 =]

[27%
C
N'p=0| — .
K [12}

For obtaining the best upper bound, we must minimize
0. The minimum value is obtained in Appendix C.
Consequently
NZEN2oN2-N2Y ]
At _C_(NI"+Np L rR) 1
6 7Z'(NL+NR—N}‘_NIIQ) 6
1 2(1+6a0)

_27[ 827[—1

(47)

Similarly, in the large central charge limit, A* can also
be obtained as follows

~+ _i
A == +0(), (48)

Using eqs. (45) and (46), an upper bound on A;can be
obtained as follows

<£_(N,L2+N,2_NLz_NRz)_l
"6 (N +Np-N;—-Np) 6

(49)
1 2(1+6,)
—_—
2 eZ/r 1
For example for
NL = 20,
Np =21,
K (50)
NL = O,
Np =39 ,

the upper bound in the large central charge limit is
obtained as follows

c 340 1 1 20+650) 1)
6 2xm 32” -1
4. Conclusion

In this paper, we used the medium temperature
expansion in order to improve the upper bound on the
primary field with lowest dimension. In Qualls' [23]
study, by using the third and the first derivatives in
medium temperature expansion, an upper bound was
obtained. In order to improve this bound, the linear
functional method was used in two-dimensional CFT
with no chiral algebra beyond the Virasoro algebra [19]:

Al 11, 2

< —_—

12 6 21 27y
In this paper, we removed the constraint that the theory
does not have chiral algebra beyond Virasoro algebra
and used the medium temperature expansion for an
arbitrary order of derivative. Then, we obtained the
optimal values of the order of derivative which led to a
better upper bound. We obtained an upper bound on A;

as follows
el NN 112
6 T 6 27 27
where
ay
c
N; =| — R
L (12) .
1
(ZN<<—

As a suggestion for future research, one can also obtain
an upper bound on the other primary fields.
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5. 1. Appendix A

In this Appendix, we obtain eq. (22) and the recursion
relation (eq. 23). Using eq. (18), the first derivative of
n(7) was obtained as follows

raizh ) =B, D@ . (52)
T
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where

n'(r) 27y
% B e*27[il' _1 :
It is convenient to write the N ™ derivative as follows

By, (z) =2mi(h+Eq) - (53)

or
Taking derivative of eq. (52) gives

N+1
[Ta—ar] (@)=

d N N
(r—} 1@ =2 A4 OFB@) @) . (54
n=0

N
Z[ri AN () +ndY () + (n+ 1) 4N, (55)
= or

(0)? 6_61' B, (r)+4Y, (r)}(z'Bh )" 24(@)

Considering eq. (52) for N - N+1 , and comparing it
with eq. (53), we obtained the recursion relation of
eq.(23). By using Hellerman's [16] findings

n@_ 1 ] (56)
n() 4
Equation (22) was obtained.

5. 2. Appendix B
In this Appendix, we obtain the largest real root of
G(A,j), for j~O(A). Considering j =A+ p where p
is the constant of order one, eq. (31) yields
G(A.A+p) =g ™ A+ p+ Eg)g™
(p+ Eg)g ™) (Eg)g ¥ (Ey) (57)
—(N; > Ny ,Np <> Np).
Let us denote the largest real root of eq. (48) by A™. In

the large central charge limit, we expanded A"as
follows

_+_ p— i_a
At = 6“(12) . (58)

a=-1
1 . .
Then, we assumed ay < 5 Plugging the expansion of
A" (56), and based on the definition of Ejin terms of c,

we expanded G(A,A+ p)in terms of land solved it to
c

obtain éT_a . Consequently, we found the following
statement to leading order in ¢ :
c N;+Ng,N;+Np
G(AY, A + p)=—| —
( p) [2 4j
@5 -Vt -5 - | (59)
o Ve NR NNy
+0| —
24

The solutions of

[(251 M 28, - J =Oare 8, = 0,1 . The largest

root of this equation is g] =1. Consequently,

— c

AT =—+0(). 60
D @ (60)

Comparing eq. (58) and eq. (45) one showed

that A* > A" .

5. 3. Appendix C

In this Appendix we calculate the maximum of b, :

2 a2 2 2
_ (N +NR™ =N, "= Ng™)
(N +Ng =N —Np)

bo (61)

For this purpose, we assumed that N;,Np, N, Npwere
continuous real variables. In order to obtain maximum
value of by, first, we evaluated the gradient of it and set

it equal to zero. It was easy to show that it had no local
maximum. So, for the nonnegative integer
N;,Ng,N;,Np, there was no local maximum. For
obtaining the maximum, we used the positivity and
constraint on N;,Np,N;,Np .

For simplicity we introduced the variable as follow
NL2 +NR2 =24% +1,

N; +Np =2b+1,

N’L2 +N1132 =2¢% +1,

N; +Np=2d+1.

(62)
(63)

In order to obtain upper bound on N; and Np, we
considered the N; — Ny plane and considered the circle
N2+ Ng? =24> +1 and the line N; + Ng =2b+1 in
this plane. Since N;,Njp are positive, from intersection
of the line and the circle, we obtained the bound on a as

262 +2b+1<2a> +1< (2b+1)%. (64)
Similarly, we obtained the bound on e as follows
2d% +2d +1< 2 +1<(2d +1)°. (65)

The maximum of by occurred at minimum of | b—d | and

maximum of| a® —é? | .The minimun of|b—d| was
equal to 1 and from egs. (62) and (63), the maximum of
the numerator was obtained. Consequently,
maxby = b(b—3)= N, (N, -3). (66)
which corresponds to

NR :NL +1,
Np=2N, -1, (67
N} =0.
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