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Abstract

A novel method is presented to describe the physics of space-charge region in a planar diode. The method deals with the issue in the
time domain and as a consequence transient time behavior before stabilization can be achieved. Potential distributions and currents
obtained using this technique, supposing zero initial velocity for electrons, reveal absolute agreement with other studies results.
Moreover, applying the method for non-zero uniform initial velocity for electrons gives the results which are in good agreement with

previous works.
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1. Introduction

Making different assumptions, the characteristics of
space-charge limited region in a planar diode have been
studied. The most basic supposition having been made is
to consider the electrodes infinitely large and therefore to
consider the equipotential surfaces as planes parallel to
the electrodes. Based on this presumption and also
assuming zero velocity for the electrons emitted, Child
[1] and Langmuir [2] obtained the well known three
halves law and a formula for potential distribution.
Langmuir and Blodgett [3,4] followed the same
procedure, however with different geometries. In one of
their studies, they calculated space charge between
coaxial cylinders [3], and in another study, they
calculated it for Concentric Spheres [4].

Extending the classical one-dimensional Child-
Langmuir law to two-dimentional law has been done in
some studies [5-7]. Two-dimensional space-charge
limited current in cylinders with finite length emitter has
been studied by Kostov and Barroso [8]. In Luginsland
et al. study [9], the analytic and computational
extensions to the one-dimensional Child—Langmuir law
was reviewed. Koh et al. [10] presented a three-
dimentional model of Child-Langmuir law for hot
electron emission in planar and cylindrical gap,
including finite emission energy effects [10]. Other
scholars [11-13] studied quantom extentions of Child-

Langmuir law by considering the interactions between
electrons.

An experimental investigation of space-charge-
limited flow of current in a nanogap was presented in
Bhattacharjee et al. [14]. When distance is comparable
to wavelength, the current density varies as square root
of applied voltage, unlike the classical Child-Languir
law  [14].  Exact relativistic solutions for  the
one-dimensional space-charge-limited diode was given
in Jori and Trivelpiece [15]. The effects of short pulses
and THz frequencies are studied and presented in some
other studies [16-18]. In Zhu and Ang [19] study
classical Child-Langmuir law was extended to
the Coulomb blockade regime.

The space charge current, assuming Maxwellian
distribution for initial velocity of electrons was studied
by Fry and Langmuir [20,21]. Through a simplified
theory, Parsons [22] presented an Exact integration of
the space charge equation in a planar diode. The effects
of finite initial velocity was examined in Akimov et al.
[23] and Ahmady et al. [24]. Extensive and continued
suervy has already been carried out on space charge.
These efforts which last over a century shows the
importance of the topic.

Space charge, is also an important factor in other
fields of physics, like beam dynamics of cyclotrons and
other particle accelrators (e.g. [25, 26]). Realizing this,
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Figure 1. The electron beam modeled by plates of electric charge entering the space.

we have proposed a different approach describing the
space-charge limited region. The method is consistant
with physics of the problem and is easy to apply. The
method can be applied for non-zero initial velocity.
Moreover, transient results can be achieved.

2. Formulation

Modeling the problem with entering planes is nearly a
usual way, e.g. [19]. In Zhu and Ang [19] study another
aspect of the problem, which is finding a threshold
voltage for single electron injection is addressed. The
situation in the present study is schematically illustrated
in figure 1.

The electron beam is modeled by plates of electric
charge periodically entering the space between the
electrodes. The positions of the charge plates are
represented by xj,x,, .... The plates are allowed to move

only in the x direction and all have the same initial
velocity (). The cathode is at potential zero and the

anode is at potential V{,. As the charge plates enter the

inter-electrode space, the presence of each plate alters
the electric field in the space. Assuming infinitely large
plates and charge density (o;,;) on them, the difference
between electric field on the right and the left of the

plates is o;,; / &y, where ¢, is the vacuum permittivity.

The emission of the electrons is modeled by periodic
entrance of plates so that we would be able to observe
the transient behavior. The transient behavior of the
system is described as follows:

Before emission starts, there is no electron in the
space, the potential distribution is linear and the electric
field is constant between the electrodes. The entrance of
the first group alters the electric field. The motion of the
plate is determined according to the force imposed by
the electric field. As the next plate enters, the electric
field gets modified. The two plates now move in
accordance with the modified electric field. The process
goes on, plates enter periodically, electric field changes
and their position alter correspondingly. The plates enter
the space until the system reaches the steady state. In this
state, the positions of the available plates in the space are

almost fixed and the space charge has been formed.

Consider N to be the number of charge plates in the
space. As the first plate enters N value is 1. After the
presence of the second plate, N value would be 2. N
value increases as the number of entering plates
increases, until the system reaches steady state. From
this point on, the entrance of plates into the space would
not raise N value. Imagine at a time there are N plates
in the space. The electric field between x, —1 and x,,,

denoted by E,, is calculated as :

X .ot Xy

E,= (-o— Oins +(”_1)O-ins)/50 > (1)

n=12,...N ,

where o is the charge density on the electrodes before
the entrance of any plate and d is the distance between
the electrodes. Using Newton's second law (egs. 2 and

3), the equation of motion of the n plate can therefore
be described as eq. (4):

F, =m¥, , (@)
F,=—¢E, , 3)
.. e X+...+Xx

Xn = 7(_0- _Moins + (I’l - O'S)O-ins) >

meg d (4)
n=1,2,...,N ,
where F,, is the applied force and E, is the applied

electric field on the electron. Also, e and m are the
charge and mass of electron, respectively.

As the plates enter, their position is calculated using
eq. (1). The current can be calculated from their arrival
on the anode. The total current density between the
arrivals of the n and (n+1)" plate is composed of two
components: J;, which is due to the arrival of a plate

with charge density o;

ns ON the anode and J,, the

displacement current. These components are calculated
as follows:

o'.
J=— 5)
tarr,nJrl _tarr,n
where ¢, ,and t,,. .., are the arrival times of the nth

and (n+1)™ plate, respectively.
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Figure 2. Normalized potential distribution obtained from Figure 3. Current density J and components .J; and
Child's method Vvs. presented method
(Vo =0.1V,d = 5m,uq = 0) Sy (Vo =0.1V,d =5um,uy =0).
zxi in previous section was applied to a system with
(TO-ins)tarr oy ¢ y Tins e, Vo=01V, d=5um, T=2lns, o;,=012c and
Jy = ; -, (6) zero initial velocity for emitted electrons. The

t t

arr,n+l ~ tarr,n
where, in the nominator, the summations hold for
available x; s in the space at times ¢, ,,; and ¢, , At

steady state, the x,s would remain unchanged, J,
approaches zero and the current density would actually
be J;. The potential at the steady state can be obtained
integrating the electric field.

In addition to the above mentioned way, the current
can be obtained from the below formula:
J = pv. (7
We expect that in steady state, pv would be the same
for all points and be the same as J;. The results

presented in comprisonal results section (4.) live up to
this expectation.

3. Procedures

The procedure of the method is as follows. The first
plane was emitted from the cathode and entered the
space. The motion of this plane is described by eq. (4)
where n is equal to /. Using Laplace transform, the
position and velocity of this plane at 7 seconds was
obtained when the second plane entered. As the second
plane entered, the electric fields and consequently the
forces applied to planes changed. Making use of eq. (4)
and Laplace transform, the positions and velocities of
these two planes at the time of the arrival of the third
plane were determined. The procedure went on this way.
Planes entered into the space one after another and their
positions and velocities were calculated. As the planes
collided the anode, the arrival current was calculated
using eq. (5). Displacement current was calculated using
eq. (6). Finally, the total current was the sum of these
two current.

4. Comparisonal results
As an illustrative example, the technique presented in the

normalized potential distribution and current density, are
shown in figures 2 and 3, respectively.

To be able to make a comparison, the potential
distribution obtained from Child’s formula is also drawn
in figure 2. Clearly, the two plots are almost congruent.
Child-Langmuir formulas for space-charge limited
current and potential are given by Child [1] and
Langmuir [2]:

480 2e

Ic == ;Vg/z , 8)
Ve (x) = (5)‘“3 Vo - ©)

For the above system, /; is 73 nA. As can be seen in
figure 3, the current at the steady state reached /-; . To

consider the effect of non-zero initial velocity, the
technique was applied to a system with the above
parameters, but non-zero initial velocity was equal to
0.ImV for emitted electrons. Using either of the two
mentioned ways, the current at steady state would be
81.3nA.

In Akimov et al. [23], the space-charge limited
current with non-zero initial velocity is shown to be:

2 2
- mug \1/2 mug \1/243
Igor =1 [(—)" " +(1+—— . 10
scL CL[(ZeVO) ( 2eV0) ] (10)
Making use of the above equation, space-charge limited
current would be 81.1 nA, showing good agreement with
the result of our method.

5. Conclusion

In this paper, the electron beam was modeled by plates of
electric charges. Applying the method gave reasonable
results in agreement with previous works. The advantage
of the method lies in the fact that it is simple and provides
transient time results. The method can also be applied for
non-zero initial velocity emission.
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