Document Type : Original Article

Authors

Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran. Iran.

Abstract

In this study, an efficient and compact optical device for slowing light in corrugated photonic crystals with different corrugation patterns are discussed. The proposed structure shows relatively large group delay with wide bandwidth and approximately zero group velocity dispersion in near-infrared region. Also, due to the zero group velocity dispersion applied on transmitted pulse, high quality pulse can be obtained by using this approach. For comparison, three different photonic crystal structures containing triangular, sinusoidal and graded sinusoidal corrugation patterns were investigated. The group index as much as 5 with the bandwidth about 50 nm is achieved in the sinusoidal corrugated photonic crystal with 8 μm length. This slow-light structure is very promising for application in quantum memories.

Keywords

  1. R W Boyd and D J Gauthier, Science 326 (2009) 1074.
  2. T Baba, Nature Photonics 2, 8 (2008) 465.
  3. T F Krauss, Nature Photonics 2, 8 (2008) 448.
  4. V R Almeida et al., Nature 431 7012 (2004) 1081
  5. A Shinya et al., Photonics 1, 1 (2007) 49.
  6. F Xia, L Sekaric, and Y Vlasov, Photonics 1 1 (2007) 65.
  7. M D Lukin and A Imamoglu, Nature 413 6853 (2001) 273.
  8. S Savo et al., Phys. Lett. 98 17 (2011) 171907.
  9. E Di Gennaro et al., Rev. B 72 3 (2005) 033110.
  10. L V Hau et al., Nature 397 6720 (1999) 594.
  11. C Liu et al., Nature 409 (2001) 490.
  12. M S Bigelow, N N Lepeshkin, and R W Boyd, Rev. Lett. 90 (2003) 113903.
  13. F A Yanez, O G Calderon, and S Melle, Opt. 12 (2010) 104002.
  14. T Okamoto and A Fukuyama, Express 13 (2005) 8122.
  15. P V Korolenko, A Y Mishin, and Y V Ryzhikova, Opt. Technol. 79 (2012) 754.
  16. Y Huo et al., Lett. 36 (2011) 1482.
  17. Y A Vlasov et al., Nature 438 (2005) 65.
  18. K Hosomi et al., Rev. 11 (2004) 300.
  19. D Mori and T Baba, Phys. Lett. 85 (2004) 1101.
  20. M Notomi et al., Rev. Lett. 87 (2001) 253902.
  21. J Schilling et al., Phys. Lett. 78 (2001) 1180.
  22. A Birner et al., Mater. 13 (2001) 377.
  23. S Noda et al., Science 289 (2000) 604.
  24. A Blanco et al., Nature 405 (2000) 437.
  25. S Y Lin et al., Opt. Soc. Am. B 18 (2001) 32.
  26. Y H Cheng and W J Hsueh, Lett. 38 (2013) 3631.
  27. C W Tsao et al., Lett. 38 (2013) 4562.
  28. Y H Cheng et al., Rev. A 90 (2014) 023830.
  29. C H Chang, C W Tsao, and W J Hsueh, New J. Phys. 16 (2014) 113069.
  30. C W Tsao, Y H Cheng, and W J Hsueh, Lett. 40 (2015) 4237.
  31. S A Schulz et al., Lett. 42 (2017) 3243.
  32. K H Choi et al., Lett. 41 (2016) 1644.
  33. N B Ali et al., Opt. 12 (2010) 045402.
  34. M Danaie, A Geravand, and S Mohammadi, Nanostruct. 28 (2018) 61.
  35. T Kawashima et al., IEEE J. Quantum Electron. 38 (2002) 899.
  36. Y A Vlasov et al., Nature. 438 7064 (2005) 65.
  37. J Goor et al., Rev. B 78 15 (2008) 153101.
  38. S A Schulz et al., Opt. 12 10 (2010) 104004.
  39. A Badolato et al., Rep. 8 1 (2018) 1.
  40. M Khatibi Moghaddam, A R Attari, and M M Mirsalehi, Eur. Opt. Soc. 8 (2013) 13066.
  41. N Matsuda et al., Lett. 39 8 (2014) 2290.
  42. R Hao et al., Express 18 16 (2010) 16309.
  43. R Hao et al., Express 18 6 (2010) 5942.
  44. Y Ohtera et al., Lightwave Technol. 25 (2007) 499.
  45. Y Ohtera, D Kurniatan, and H Yamada, Express 18 (2010) 12249.
  46. L Gao, F Lemarchand, and M Lequime, Express 20 (2012) 15734.
  47. C Tan, Non-Cryst. Solids 223 (1998) 158.
  48. K Yee, IEEE Trans. Antennas Propag. 14 (1966) 302.
  49. Y Ohtera, J. Appl. Phys. 47 (2008) 4827.
  50. H Shahrokhabadi et al., Physics Letters A 384 11 (2020) 126235.