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Abstract

This study demonstrates how thermal structures in the interstellar medium can emerge as a result of thermal instability. For a

two-dimensional case, the steady state thermal structures was investigeted and it was shown that a large class of solutions exist.

For a one-dimensional case the conductivity was found to be negligible. The effects of local cooling on the thermal instability

were explored in some depth. In this case analytical results for time-dependent cooling function were presented, too. We studied

nonlinear wave phenomena in thermal fluid systems, with a particular emphasis on presenting analytical results. When

conductivity is proportional to temperature, the behavior of thermal waves is soliton like. For slow thermal waves, approximate

analytical results were presented. Extensions of this work are discussed briefly, together with possible astrophysical applications.
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1. Introduction

Inhomogeneties in interstellar medium (ISM) can
be modeled by various instabilities. Thermal
instability may be one of the primary causes for a
two-phase medium with dense, cool clouds and hot,
tenuous intercloud regions. The main motivation
behind the studies of radiative condensation has
been to explain the formation of dense and cool
localized structures in astrophysical and laboratory
plasmas, when their masses are less than those
required for gravitational contraction. The role of
thermal instability has been invoked in quite a
number of astrophysical contexts, such as the solar
corona [1}], broad-line emission regions of active
galactic nuclei [2-4], gas in clusters of galaxies and
the intergalactic medium [5, 6], and evaporation of
accretion disc [7]. We have quoted here only
representative works in each field. In addition,
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thermal instability in its macroscopic form, namely
in a fluid of clouds and clumps [8] may also be
relevant in the ISM.

The classical thermal instability [9] operates at
the thermal pressure of the gas, with heating and
cooling appropriate for this therma} gas alone. A
more detailed investigation of the growth of
condensation in cooling regions has been presented
by Schwartz et al [10] who included also the effects
of ionization and recombination and by Balbus [11]
who examined the effect of magnetic fields. More
recent investigations are concentrated on the
process of a two-phase medium formation [12] and
the dynamics of this medium [13]. Recent progress
reports on the theory of thermal instability is given
by Balbus [14], and Illarionov & Igumenshchev [15].

By using techniques of pattern theory, Elphick
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et al [16] studied thermally bistable media. They
proved that for such media, a front, separating the
two stable phases, is stationary. Elphick et al [17]
have carried these ideas somewhat further by
including fluid motions in the model. Ferrara and
Shchekinov [18] studied thermal solitons, using
phase plane analysis. For a one-dimensional case,
using langrangian variable largely facilitates thermal
instability analysis [19].

All these authors have presented only numerical
or qualitative results. In this paper, our goal is to
obtain analytical results as far as possible. Since the
full magnetohydrodynamic problem is rather
complicated and the chances of finding meaningful
analytic solutions seem remote, we used a collection
of model equations which approximate the true
behavior of the system.

This paper is organized as follows. We begin
with a general formulation of the problem in
section 2. In section 3 we study steady state
solutions. We will see that complex thermal
structures can be formed as a result of thermal
instability. For one-dimensional case, effects of
local or time-dependent cooling functions on the
thermal instability are investigated in section 4. In
section 5 we study nonlinear thermal waves with
particular emphasis on presenting analytical results.
For slow thermal waves, we obtain approximate
analytical results. A conclusion will be provided in
section 6 with a discussion and a summary of our
results. ‘

2. General formulation

The macroscopic properties of the interstellar
medium are governed by the hydrodynamic
equations of motion.

9p v) =

2.4V . (pm) =0, ®
L.V =-Vpp, @
6T (%+(’U.V)SJ =V.(KVT)-L(p,T), 3)

and equation of state
p = kT Q)

where n and s are particle number density and
entropy density. L(p,T) is cooling-heating function
and K(p,T) is the heat conductivity of the ISM.
Other variables have their conventional meanings.
The viscous terms in the hydrodynamic equations
have been neglected since they become important
only if the velocity v is comparable with the velocity
of sound.

The cooling function and heat conductivity are
very important; and if we assume that the pressure
is constant (see, e.g., [20]) we may write them as a
function of temperature (or density). The power law
K« T? covers most cases of interest. As other
physical processes may be involved, we leave o open
[21].

Itis convenient to work in dimensionless units.
It has shown that for the one-dimensional case [19].

8T 8 (KaT

ot AT -— =22 =0 5
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where A(T) is the cooling function and m is the
Lagrangian mass variable. This is our main

equation for thermal instability analysis.

3. Steady state solutions 8
When the thermal instability is strongly affected by
heat conduction, the characteristic time scale of
heating and cooling processes is considerably longer
than the acoustic time scale. This condition permits
the simplification of the fluid equations. It ca be
easily shown that from equation (3) we have
SE=uv?u+g(u,p), ©)
where K=T% u=T**1 and g(u,p)=-(1+a)T*L(T,p).
In general case cooling function, L(T,p), is a
complicated function [22]. But it is possible to fit
the cooling function with these simple forms:

g(w,p) = u((ug-u)>-A%(ug-u)-flogp), ™)
or
g(u,p=1)=u(-Asin(Bu+C)), )

where u,, A, § are parameters, that can be assigned
values to fit the cooling function reasonably [16].
We may use equation (8) instead of equation (7)
where A, B, and C are parameters that can be
obtained by fitting.
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In one dimension, for the steady state case from
equations (6) and (8) we have

a%
EX-;J(E) =0, ®)

where £=Bu+C and A(§)=sin(£). By introducing
£=4Arctanf(x), from equation (9) we have
a’ . df )2

2
1+£7)—-2f
(eSS -21( 5

-f(1-t%) =0, (10)

2
We see that (d—f) =a4f4+a2f2+a0 satisfy in this
equation and ay,=2a,+1 and ag=ay,, so we have

=X +constant, (11)

J df
J a4f4+ (2a,+ 1)f2+a4

where 2a,+1>0. Depending on the value of a4, we
have various solutions. We obtain [23]

1-T(x)
&=4Arctan | ———— (12)
1+T(x)
where
cd(kx,1/k), a,>0
T,(x) = {tanhx, a =0,
ked(xk), 1/4<a,<0. (13)

In these equations cd(x,k) is the Jacobian elliptic

x?-x3
function and k2 = where
X3

2 -(2a4+1)+q] da,+1

1 2a, ’

(14)

2 -(2a,+1)- 4a,+1

2=

2a4

Equations (12) and (13) show that in the static
case three different configurations are possible: (1)
finite cloud surrounded by hot intercloud gas, (2)
hot intercloud layer separating two infinite cold
regions, and (3) a periodic sequence of
cloud-intercloud regions. Ferrara & Shchekinov
[18] described these results qualitatively using phase
diagram analysis. But here we present analytical

results for steady state thermal structures.

Now after investigating one dimensional steady
state thermal structures, we shall study these
structures in two or three dimensions. For two or
three dimensional cases, obtaining analytical results
is much more difficult. In these cases we have

VZ = AE) (15)

If A(&) is linear, we can solve this equation by
standard methods. But A(£) is a nonlinear function.
For some form of this function, analytical solutions
exist. For example, if A(§)=-a&2+b& then [24],

ecos( _@X)
By —d |14 , ()
4 cosh2(—§y) cosh (gy)

where a and b are constant parameters and ¢ is a
small parameter. This solution shows a chain of two
dimensional standing thermal solitons.

For two dimensional cases, we can investigate
solutions of equation (15) qualitatively. From this
equation we have

2
(&)« (2] -re, an
ax ay

where F(§)=2fA(£)d&. From this equation it is
clear that the variety of steady state solutions in
higher dimensions is, richer than the one
dimensional case. Equation (17) defines a surface in
d . .
5;’6_—’5 -space. Such a surface which we designate
by S ﬁlere is the locus of points whose coordinates
satisfy this equation. In fact in one dimension,
equation (17) defines curves in phase space [18].
These curves are projections of surface S on one of
the coordinate planes (that is, -a-§-§ or a—--& .
planes). So any curve on S represe)%ts one ofythe
solutions. We may consider various curves on S
which correspond to standing nonlinear
temperature waves. Their spatial period is
determined by the specific form of the curves on S
and the form of cooling function.

4. Thermal instability when K - 0
Nonlinear equations similar to equation (5) arose
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in a large number of studies devoted to various
problems of nonlinear waves, instabilities, and
structures in dissipative media (see, e.g., [25]). In
section 3 we have investigated steady state
(time-independent) thermal structures. But solving
equation (5) in general case is difficult. In this
section we consider a simple case. If the heat
conduction term in this equation can be neglected,
the nonlinear dynamics of the thermal instability is
determined solely by the form of the cooling
function and by initial conditions. We have

aT
SoHAT)=0 (18)

Now we investigate effects of local cooling on the
thermal instability when heat conduction can be

neglected. We assume a local cooling term as -f(m), |

SO
L= -AT) +£(m) (19)
If A(T)=1-T and T(m,t=0)=Ty(m), then from
equation (19) we have

T(m,t)=1-f(m)+ (f(m) +To(m)-1)e". (20)

It is clear from equation (20) that, the regions with
To(m)>1-f(m), will be heated, while those with
Tp(m)<1-f(m) will be cooled. The regions with
To(m)<1-f(m) cool until the temperature at some
point (say, m«) becomes zero. At this point, the gas
density becomes infinitely large (explosive
condensation). This effect takes place at the time
moment

1-£(m,) ] @

ty.=In
l:l - f(m,) - Ty(m,)

Now we consider another form for cooling
function: A(T)=T-T2 Here we have two
equilibrium points, T=0and T=1. If we introduce
4f(m)-1=c(m), we may have c(m)<0 or c(m)>0 or
¢(m)=0. For each of these cases, equation (19) can
be solved. For example, if c¢(m)>0 the gas
temperature behaves as

o () 12
2 { ¢(m)
1 2Eem) [l C(m)tJ
J c(m) 2

1 +«] c(m)

T(m,t) =

DN =

(22)
and it becomes infinite at m« at the time moment

[ c(my) ]
arctan | ————— (23)
’ C(m*) 2T0(m*)-1

ty=

Simultaneously, the gas density becomes zero at this
point. It seems when we consider the local cooling
function, we deal with situations where the solution
blows up in a finite time leading to a catastrophic
instability.

Now we consider the time-dependent cooling
function as g(t). So

L =-AT)-g(0) 24
For A(T)=T%T and T= %3——? this  equation
becomes
*u gu
;t—Z-_Et—+g(t)u=0 (25)

1
where by introducing u = e2£, we have

2
L2+ (a-1) g=0 (26)
at

Depending on the specific form of g(t), this
equation may have periodic solution that becomes
zero at some points. For example, if g(t) =cos(t),
equation (26) becomes Mathieu’s equation. So for
time-dependent cooling function, we may have
explosive rarefaction or condensation. In fact this
form of cooling function or local cooling function
do not remove these explosive behaviors.

5. Nonlinear thermal waves

It has been shown that equation (6) has traveling
wave solutions [16]. Ferrara & Shchekinov [18]
investigated these nonlinear thermal waves, by using
phase diagram analysis. In this section, we shall
show that for K«T, equation (5) becomes
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well-known equations. These nonlinear thermal
waves are very important. The key role played by
the fronts between the cold and the hot gas in
thermal systems has been recognized by Zel’dovich
& Pikel’ner [26], who formulated a phase rule
giving the value of the ambient pressure necessary
for stationary of a front between the two stable
phases.

But stability of thermal waves remained as an
open question. For K« T, we shall find solitary
thermal waves. In this case from equation (5), we
have

aT_ T
ot amz

- AT) @7)

There are a lot of works on this nonlinear diffusion
equation. The general properties of equation (27)
have been systematically investigated by Aronson &
Weinberger [27]. They proved that from a wide
class of initial data, the solution of this equation
will converge to a local travelling wave with a
definite speed. It is also pointed out that there
exists a critical speed C” for the waves, which can
be estimated by

2 [i’}] <C" <o T,L=sup L) 28)
at) ¢ _, T

We can choose appropriate cooling function
[22]. For A(T)=T(T-1), this is the well-known
Fisher equation; and for A(T)=TSk-T°‘) (T%-1),
where « is a parameter and 0<k<-, it becomes
Huxley equation. These equations?have solitary
wave solutions.

Now we obtain exact traveling wave solutions of
equation (27) for A(T)=p(TP-T9), where 3, p and q
are constant parameters. If we let
T(m,t)=T(y), y=m-ct, 29)
where c is an undetermined constant, then equation
(27) becomes

2
(T &

G =D (30)

dT
We assume —-y-=aT+an, where a, b and n are
undetermined parameters. In fact, this ansatz is the
famous Bernoulli equation. We can rewrite

equation (27) with the help of this ansatz. It gives
the value of undetermined parameters. Equation
(27) has traveling wave solutions for the following
cases.

(a) For p=1 and f(q+1)>0, we obtain

2

-1
(L[t B 1)’
T(m,t) _—{-itanh [-?\I m(m +J 2(q+1)(q+3)t+co:| +2J

G

where ¢ is an arbitary constant. This ia a solitary
wave solution.
(b) For 2p=q+1 and S(q+1)>0, we have

2

-1 gq-1
T(mat)‘: {%tanh l:# 2((1—1+15(m+ :1—2%(+C0:|+%}

(32)

For A(T)=gsinT, we obtain the slow thermal

wave solution for equation (27). We express the

solution in the form of expansion in terms of a
small parameter ¢/L=¢ as

T(me) = Toy(m) + eTy(m) + £’To(m)+..  (33)
and substitute T(m,¢&) into equation (27). So we

have

2
a’T
" gsinTy=0 (34)
dm?
and we have solved this equation

1

“hY 2
Ty(m) = 4Arctan (.11-4-_?1] (33)

where h = h(\l—g m) and
sn(ky,1/k), k>1

h(y) = { tanhy, k=1 (36)
ksn(y,k), 1>k>0

The equation satisfied by T;(m) is

d’T (m) dT,

———-gT cosTy=-— (37)
am? 2 10T

When k=1, the solution of this equation becomes
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Ty = e’ U'ng [coshz ( Em] +2J

(38)
Calculation of the functions Ty(m), T5(m), ... can
similarly be done. For fast thermal waves, equation
(27) can be solved [28].

6. Summary

Thermal instability seems to play an important role
in the process of formation of different thermal
phases in ISM. In this paper we studied thermal
instability in various cases. Steady state thermal
structures have been investigated in detail. For
one-dimensional case, we presented analytical
results and it has been shown that in this case three
different time-independent thermal structures are
possible. We have hot (or cold) cloud surrounded
by cold (or hot) intercloud gas; or a periodic
sequence of hot-cold regions.

For two or three dimensional cases, presenting
analytical! results for the steady state thermal
structures is difficult. In fact like the
one-dimensional case, the behaviour of solutions
depends on the form of cooling function and for
some forms of this function, analytical solutions
exist. But in this case we can study steady state
solutions qualitatively. It has been shown that the
variety of steady solutions is richer than that for the
dimensional case. There remains an interesting
question about the conditions for realization of
steady state structures, in problems with different
initial conditions.

When heat conduction is negligible, we can
investigate the nonlinear dynamics of the thermal
instability analytically. In fact, in this case behaviour
of thermal instability is determined only by the
form of the cooling function and by initial
conditions. We studied the effects of local and
time-dependent cooling function on the thermal
instability. In these cases, we obtained explosive
condensation or rarefaction as a result of thermal
instability. Analytical results for these have been
presented.

It has been shown that solitary wave solutions
are admitted by the equation describing thermal

system. In fact when conductivity is proportional to
temperature, this equation becomes a well-known
equation depending on the form of cooling
function. These equations have solutions and they
are stable. Therefore, stable thermal waves (thermal
solitons) can be formed in the ISM as a result of
thermal instability. For other cases (i.e. Ko T?
where a#1), we have thermal waves which may be
unstable. This is an open question. For slow
thermal wave, we obtained analytical resuits.

These thermal solutions may lead to a different
picture of the ISM. Since they are stable,
time-dependent patterns which propagate can be
formed. Highly ionized species are detected either
in the disk or in the halo. Thermal solitons may
produce these patterns. A serious extension of the
present work would be the examination of thermal
waves in two or three dimensions. We have
concentrated on the study of stationary waves in
one spatial dimension. Within this class of waves, a
great variety of solutions exists. However, more
general types of wave solutions should be studied.
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