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Abstract
We elaborate on some recent results on a solution of the Hilbert-space problem in minisuperspace quantum cosmology and discuss 
the consequences of making the (geometry of the) Hilbert space of ordinary nonrelativistic quantum systems time-dependent. The 
latter reveals a remarkable similarity between Quantum Mechanics and General Relativity.
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Dedicated to the memory of Bryce Dewitt.

1. Introduction
Perhaps the most challenging problem facing theoretical 
physicists since the 1930’s has been the formulation of a 
consistent physical theory that encompasses Quantum 
Mechanics (QM) and General Relativity (GR). The early 
steps toward addressing this problem were taken by 
Dirac who attempted to apply the rules of canonical 
quantization to GR. The fact that 4 out of 10 components 
of the Einstein field equation are constraints necessitated 
the development of a quantization scheme that could 
handle the presence of constraints. This constituted one 
of the most significant contributions of Dirac to 
theoretical physics. It is referred to as Dirac’s 
constrained quantization scheme which he formulated in 
the 1950’s, [1].

The application of Dirac’s scheme to GR required a 
Hamiltonian formulation of GR which was made 
available in early 1960’s [2]. The first concrete steps 
toward establishing a canonical quantum theory of 
gravity was subsequently taken by Bryce DeWitt [3] and 
John Wheeler [4]. The result was an ingenious theory 
that suffered from severe mathematical as well as 
interpretational problems [5,6]. These problems have 
been the subject of numerous research articles for the 
past 40 years or so. Yet a satisfactory solution of many 
of them is still unavailable [7]. Among the most 
important of these is the Hilbert-space problem that we 
will elude to here.

The severity of the problems associated with 
canonical quantization of gravity has led a number of 
researchers to take the opposite root, i.e., rather than 
trying to quantize GR they tried to geometrize QM, [8].
This was mainly motivated by the idea that perhaps the 
origin of the above-mentioned difficulties is that QM 
itself is an approximate theory and that one must put QM 
in a geometric setting and seek for its nonlinear 
generalization(s) [9]. The developments in this direction 
have admittedly failed to lead to a concrete and 
physically acceptable alternative to QM. Nevertheless, 
revealing the geometric structure of QM is an interesting 
endeavor in its own right, especially in connection with 
geometric phases and their widespread applications and 
implications [10,11].

Today the most promising candidate for a canonical 
quantum theory of gravity is the so-called loop quantum 
gravity [12]. Similarly to its more popular rival, String 
Theory, loop quantum gravity has not yet produced a 
concrete experimentally verifiable prediction. Therefore 
one cannot view it as a physical theory. As a 
mathematical theory with potential physical applications, 
however, it enjoys a higher level of rigor in its 
formulation than the String Theory.

2. Hilbert-space problem in minisuperspace 
quantum cosmology
Consider a classical system that is time-
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reparameterization invariant. Then its classical Hamil-
tonian K vanishes identically; the system has a first-class 
constraint 0),( =pqK , where ),...,( 1 nqqq =  and

),...,( 1 nppp =  are the unconstrained coordinate and 
momentum degrees of freedom. According to Dirac [1], 
quantization of this system is performed in two steps. 
First one quantizes (q, p) as if there were no constraints. 
This is done according to the well-known rules of 
canonical quantization: iiii ppqq ˆ,ˆ →→ where

.]ˆ,ˆ[,0]ˆ,ˆ[]ˆ,ˆ[ ijjijiji ipqppqq δ=== (1) 
Then one imposes the constraint as the condition:

.0)ˆ,ˆ( =ψqpK (2) 

This defines the physical state vectors ψ  of the 
constrained system.

Dirac’s scheme involves an auxiliary (unconstrained) 
Hilbert space H ′ , that is endowed with the 2L -inner
product and furnishes the Heisenberg-Weyl algebra (1) 
with an irreducible representation, and a physical Hilbert 
space H, which is defined according to eq. (2) as the 
kernel (null space) of the quantum constraint

HH ′→′= :)ˆ,ˆ(:ˆ qpKK ,

{ } ).ˆ(Ker0ˆ: KK ==′∈= ψψ HH (3) 

This equation identities H  with a certain vector 
subspace of H ′ . It does not specify the inner product on 
this subspace. This lack of a prescription to endow H
with an inner product is known as the Hilbert-space 
problem. Once an appropriate inner product is given to
H , one can define the physical observables of the 
theory (as Hermitian operator acting in H ), outline a 
dynamics by selecting a Hamiltonian operator from 
among the observables, and employ the axioms of QM to 
deal with interpretational issues [13].

It is customary to use the coordinate basis { }q′  to
represent the state vectors and operators,

,:)(,ˆ,ˆ ψψ qqqipqqqqq
iqiii ′=′′∂−=′′′=′ ′

(4) 
where ∈′′=′ ),...,( 1 nqqq Rn and )(q′=ψψ is the 
coordinate wave function associated with the state vector 
ψ . In this coordinate representation the quantum 

constraint (2) takes the form of a linear partial 
differential equation:

0)(),( =′′∂− ′ qqiK q ψ  (5) 

where ),...,(
1 nqqq ′′′ ∂∂∂∂=∂ , and the physical Hilbert 

space is identified with the solution space of this 
equation. In effect, the Hilbert-space problem is 
equivalent to promoting the vector space of solutions of 
eq. (5) into a Hilbert space.

It is important to note that in general the operators iq̂

and ip̂ do not commute with K̂ . Therefore they do not 

leave H  invariant, i.e., there are H∈ψ such that 

H∉ψiq̂ and H∉′ ψip . This shows that the 
coordinate and momentum operators )ˆ,ˆ( ii pq are not 
physical observables. In particular, the eigenvalues iq′ of 

iq̂ are not (measurable) physical quantities, and the 
wave functions )(q′ψ  do not represent physically 
meaningful entities. The attempts to extract a 
‘probability density’ out of the wave function )(q′ψ
therefore lack a logical basis.

The situation is quite different in the absence of such 
a constraint. In that case H ′  is the physical Hilbert 
space, and being Hermitian operators acting in H ′ , iq̂
and ip̂ are physical observables. Therefore, we can 
identify q′  with the result of a q̂ -measurement whose 

probability density is proportional to 2)(q′ψ .1

When the constraint (2) is present, one must first 
determine the physical position operator that unlike q̂
acts in H (and leaves it invariant) and then use its 
eigenvectors to define a new set of wave functions 
whose modulus-square can be interpreted as the physical 
probability density of localization of the system. All this 
cannot be achieved unless one solves the Hilbert-space
problem. 
 In full canonical quantum gravity, in its traditional 
metric formulation [3], the metric tensor µνg plays the 
role of the coordinates q. In the Hamiltonian formulation 
the diffeomorphism invariance of the theory manifests 
itself as the presence of a Hamiltonian constraint which 
is related to time-reparameterization symmetry of the 
theory and three momentum constraints that are linked 
with the diffeomorphism symmetry of the spatial 
hypersurface in the ADM decomposition of the 
spacetime. Quantization of the Hamiltonian constraint 
leads to an infinite-dimensional analog of eq. (5) which 
is known as the Wheeler-DeWitt equation; it is a 
functional partial differential equation plagued with a 
number of problems [5,6,7,14].

Imposing the extremely strong and highly unrealistic 
simplifying assumption of spatial homogeneity, one is 
led to a finite-dimensional system in which the Wheeler-
DeWitt equation may be written as a Klein-Gordon 
equation with a variable mass term:

0),....,,(][ 1
2 =′′′+∂ ′ nD ββαψα (6) 

where α′  and 51,....,ββ ′′ correspond to the eigenvalues 
of the operators obtained by quantizing the 3-metric 

iijg β ′, with 5>i represent matter degrees of freedom, 
and D is a second order elliptic differential operator with 
variable coefficients. We will view eq.(6) as a second 

____________________________________________

1. It is equal to 2)(q′ψ  for a normalized state vector ψ .
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order ordinary differential equation defined on the 
Hilbert space 2:~ L=H (Rn) by identifying D with a α′ -
dependent Hermitian operators D acting in H ′~ . 
Introducing H~,.)(:)( ∈′=′ αψαψ , we then have

.0)(][ 2 =′+∂ ′ αψα D (7) 
Note that we label the coordinate operators acting in the 
Hilbert space 2~ L=H (Rn) by iβ̂  and identify their 
common eigenvectors and the corresponding eigenvalues 
by β ′  and iβ ′ . Then we have

)(),...,,( 1 αψβββαψ ′′=′′′ n ,

where we use ..  to denote the 2L -inner product on

H~ .
As an example, consider an FRW model coupled to a 

real scalar field ϕ . Then (in natural units [15]) the
classical Hamiltonian constraint has the form

,0)(6422 =+−+−= ϕκ αα
ϕα VeeppK (8) 

where α is the logarithm of the scale factor: κα ,ea =
is the curvature index (= -1, 0, 1 for open, flat, and 
closed universes, respectively), and V is the self-
interaction potential for the field ϕ . In this case, all iβ ,
except ϕβ =6 are absent, and the corresponding 
Wheeler-DeWitt equation is given by eq. (6) with

).(642 ϕκ αα
ϕ ′+−−∂= ′′
′ VeeD (9) 

 Another example is the mixmaster model [16,17] 
whose Hamiltonian constraint has the form

,0]1),([ 21
4222

21
=−+++−= ββα

ββα VepppK (10)

where α is again the logarithm of the scale factor 
)( αea =  that together with 1β  and 2β  parameterize the 

3-metric,
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Again the associated Wheeler-DeWitt equation is given 
by eq. (6) with

].1),([ 21
422

21
−′′+∂−−∂= ′

′′ ββα
ββ VeD (12)

Note that in these examples, and more generally for 
other spatially homogeneous cosmological models, the 
operator D appearing in the Wheeler-DeWitt equation is 
identical with the standard Hamiltonian operator for a 
non-relativistic particle moving in Rn and interacting 
with a certain α′ -dependent potential.

As seen from the form of the classical Hamiltonian 
constraints (8) and (10), α is a time-like coordinate in 
the minisuperspace. This has made the variable α′  that 
appears in the Wheeler-DeWitt eq. (6) a popular choice 
for a time-variable in quantum cosmology. A surprising 
recent result [18] is that no matter which positive-
definite inner product one endows the physical Hilbert 
space H  with, the α′ -translations correspond to non-
unitary operators acting in H . This is a concrete 
evidence that one cannot use α′ as a physical time 
variable. Indeed the rather involved analysis of the 
Hilbert-space problem for the Wheeler-DeWitt eq. (6) 
shows that the problem has a rather trivial solution. One 
can identify the space of solutions H  with the space 

2L (Rn)× 2L (Rn) of initial conditions )(),( 00 αψαψ α ′∂′ ′
of the Wheeler-DeWitt eq. (7) and endow the vector 
space. 2L (Rn)× 2L (Rn) with a positive-definite inner 
product. For example one may take the direct sum inner 
product, i.e., identify H  with 2L (Rn) 2L⊕ (Rn) The 
choice of the initial value 0α′ of α′ and the choice of 

the inner product on 2L (Rn)× 2L (Rn) are physically 
irrelevant, for up to unitary equivalence H  has a unique 
separable Hil bert space structure [19].

The explicit form of an inner product on H can be 
easily written down [18] and physical observables may 
be constructed. For example, there is an observable ε̂
that squares to 1, i.e., it has ±1 as eigenvalues. A much 
more difficult task is to formulate a correspondence 
principle that would associate classical observables to 
the obtained quantum mechanical observables. This 
requires certain amount of speculation. In Ref. [18], we 
have outlined a proposal in which the classical analog of 
the quantum observable ε̂ is the sign of the derivative of 
the classical scale factor with respect to any classical 
physical time variable. In this formulation the 
eigenvalues ±1 of ε̂ correspond to the expanding and 
retracting universes, and in general the state vector for 
the universe will have expanding and retracting 
components.

In [18] we also outline a proposal for the formulation 
of the dynamics of the theory. It is based on the 
Schrödinger time-evolution determined by a 
Hamiltonian operator H acting in H that is obtained by 
quantizing an associated reduced classical Hamiltonian. 
In practice, this involves selecting a classical time-
variable, finding a corresponding reduced classical 
Hamiltonian that would yield the classical dynamical 
equation for this time-variable, and finally quantizing the 
latter to obtain H.

We wish to emphasize that the Hilbert space problem 
is not a major obstacle in quantizing minisuperspace 
models. The difficulty lies in the formulation of a 
correspondence principle that associates to each quantum 
observable a classical counterpart. This is also of basic 
importance for our proposal [18] for defining the 
dynamics. The theory is still far from satisfactory for it is 
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plagued with the notorious multiple choice problem 
[5,6]: Different choices for the classical time variable 
seem to lead to different quantum systems, and it is not 
clear how one should avoid or interpret this apparent 
violation of the time-reparameterization invariance. A 
possible way out is to identify an equivalence relation 
between these quantum systems and associate physical 
reality to the quantities that are common to all members 
of a given equivalence class. The feasibility of this 
approach can be decided only after a detailed 
investigation of some concrete models. Unfortunately, 
this has not been possible even for the simple models 
such as eqs.(8) and (10) for technical reasons.

3. Hilbert space with changing geometry
What made Albert Einstein the most influential scientist 
of the 20th century was that not only he had the courage 
to unify the concepts of time and space, but he was 
willing to consider the revolutionary idea of making the 
geometry of spacetime dynamical.

Recently, within a totally remote subject, it was 
discovered that one could devise a unitary quantum 
system using a seemingly non-Hermitian Hamiltonian, 
such as 32 ixpΗ += , provided that its spectrum was 
real [20,21]. This was only possible at the expense of 
adopting a non-standard inner product on the 
Hilbert space of the system. The ensuing theory is 
termed as pseudo-Hermitian quantum mechanics
[20, 22, 23, 24, 25, 26]. It provides a general method of 
constructing the most general inner product that renders 
the Hamiltonian self-adjoint and consequently restores 
the unitarity of the dynamics. It has direct applications in 
relativistic quantum mechanics of scalar fields and 
quantum cosmology [18, 27, 28] and many other areas 
[29]. In particular, in its application in quantum 
cosmology, one is forced to deal with explicitly time-
dependent Hamiltonians which would generate unitary 
time-evolutions provided that the inner product of the 
Hilbert space be made time-dependent as well. This 
observation subsequently led the present author to 
investigate the consequences of having a quantum 
system defined on a Hilbert space with a time-dependent 
inner product and hence a dynamical geometry [30]. The 
resemblance to the passage from special to general 
relativity needs no clarification.

The geometry of a Hilbert space is determined by its 
inner product. It is well-known [31] that any inner 
product .)|(. on a given vector space ν  may be obtained 
from a given inner product ..  according to

ηη .,.:...)|(. == , (13)

where ννη →: is an invertible operator satisfying
..... ηη = (14)

That is if we label the inner product (Hilbert) space 
obtained by endowing ν  with ..  by H , then as an 
operator acting in H , η is self-adjoint or Hermitian. 

Furthermore, the requirement that η.,.  be positive-

definite, i.e., for all nonzero 0,, >∈ ηψψψ Η , 
implies that η must be a positive-definite operator (its 
spectrum must be strictly positive.)

The operator η  may be conveniently used to 
quantify the choice of the geometry of the Hilbert space; 
it is referred to as a metric operator. In the following we 
will take the inner product ..  of Η as a time-
independent reference inner product and characterize the 
dynamical geometries of the Hilbert space in terms of 
time-dependent metric operators.

Now, suppose that the dynamics of a quantum system 
is determined through the Schrödinger equation:

)()( tΗt
dt
di ψψ = , (15)

where HH →:H is a given possibly time-dependent 
and not necessarily Hermitian operator. Then the 
condition that H generates a unitary time-evolution for a 
time-dependent inner product defined by the metric 
operator )(tη i.e., requiring that for any pair 

( ))(,)( tt ζξ of solutions of eq. (15), 0, )( =tdt
d

ηζξ , 

we find
†( ) ( ) ( ) .di t t t

dt
η Η η η Η= − (16)

This is the non-Hermitian extension of the Liouville-von 
Neumann equation. It reduces to the following Liouville-
von Neumann equation for a Hermitian Hamiltonian H:

].,[)( ηΗη =t
dt
di (17)

This equation has two interesting ramifications.
1. The invertible mixed states (density matrices) used 

in quantum statistical mechanics define acceptable 
metric operators, for they are positive-definite solutions 
of the Liouville-von Neumann equation.

2. Each acceptable metric operator (that satisfies eq.
(17)) is a dynamical invariant in the sense of Lewis and 
Riesenfeld, [32]. In particular, the eigenvalues of η (t) 
are time-independent and one can obtain a complete set 
of solutions of the Schrödinger eq. (15) out of 
eigenvectors of )(tη .

The connection between metric operators and 
dynamical invariants is particularly interesting because 
there is a well-known formulation of geometric phases in 
terms of dynamical invariants [33]. In view of results of 
[34], it is the metric operator )(tη that determines the 
geometric phases. This observation reveals, in a rather 
direct manner, the geometric nature of these phases 
without appealing to the conventional geometric 
formulation based on the classifying U(1) principal 
bundle over the projective Hilbert space [11, 35].

Another interesting conclusion that may be drawn out 
of the above-described connection is that one can 
postulate a different or more general dynamical equation 
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for the metric operator, determine the geometric phases 
for evolving states using the eigenvectors of the solution 
of this equation, and postulate a method to identify the 
dynamical phases for an evolving state. This would lead 
to a generalization of quantum mechanics which shares 
the same geometric structure. In Ref. [30] we offer a 
proposal for such a generalization based on Lindbald’s 
master equation [36].

Finally, given a Hamiltonian there are an infinity of 
acceptable metric operators (parameterized by the initial 
value 0η of )(tη ). There is a permutation group G that 
relates this metric operators. The freedom to choose 0η
is a rather trivial quantum mechanical analogue of the 
diffeomorphism invariance of GR. Similarly, the 
permutation group G plays in QM a similar role as the 
diffeomorphism group does in GR.

The natural extension of the ideas presented above is 
to attempt at introducing a particular type of nonlinearity 
in QM by allowing the metric operator to be state-
dependent. Whether and how this can be achieved is the 
subject of a future investigation.

4. Conclusion
Quantization of GR and geometrization of QM are both 
as attractive and intriguing subjects for research as they 
were initially considered in the 1960s and 1970s. In this 
paper we elaborated on some recent developments in 
these subjects.

In connection with canonical quantization of GR, we 
argued that at least for the simplified quantum 
cosmological models the Hilbert-space problem may be 
avoided by trying to directly endow the solution space of 
the Wheeler-DeWitt equation with an arbitrary inner 
product. The difficulty lies with interpreting the quantum 
observables or alternatively relating them via a 
correspondence principle to the classical observables. 
This approach is the opposite of the one taken in the so-
called group-averaging scheme [37]. It has the advantage 
of being explicit and easy to compute [18].

On the subject of the geometrization of QM, we 
elucidated the role of the geometry of the Hilbert space 
and showed that it was possible to consider quantum 
systems with dynamical Hilbert spaces. After all, the 
geometry of the Hilbert space is as unobservable as the 
state vectors themselves. What is observable is the 
transition amplitudes and expectation values which 
involve both the state vector and the metric operator. 
Promoting the role of the geometry of the Hilbert space 
from an idle observer to a real player in the quantum 
game reveals some remarkable resemblances between 
QM and GR. It also opens up the way to formulate a 
nonlinear extension of QM which might be more 
convenient to be unified with GR in a yet-to-be-
discovered consistent quantum theory of gravity.
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