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Abstract 

Considering bulk viscosity as (i) constant quantity and (ii) functions of cosmic time, the field equations in 5-dimensional 

Bianchi type-I model in the context of general theory of relativity, has been obtained and solved in this paper by the use 

of certain physical assumptions, which are agreeing with the present observational findings. In both cases, the model 

represents an exponentially expanding and accelerating Universe that starts with volume 0 and stops with infinite volume. 

The model has an initial singularity and will eventually approach the de-Sitter phase (𝑞 = −1). It also satisfies the energy 

conditions 𝜌 ≥ 0 and 𝜌𝑝 ≥ 0. This model represents a matter-dominated Universe that agrees with current observational 

data. The model is anisotropic one and shearing throughout its evolution for 𝑛 ≠ 1 

Keywords: 5 dimensions, cloud strings, viscous fluid, bianchi type-I space-time

1. Introduction 

Still now it is an interesting location for the cosmologists 

to study and discover its unknown phenomenon that have 

yet to be observed to study and explore the hidden 

information of the Universe. As a result, cosmologists 

have taken a keen interest in understanding the past, 

present and future evolution of the Universe. Letelier [1] 

and Stachel [2] pioneered the general relativistic study of 

strings by developing a classical concept of geometric 

strings. Because of the importance of strings in describing 

the early stages of our Universe, many distinguished 

authors are now interested in cosmic strings within the 

framework of general relativity(GR) (Kibble [3,4]) and it 

is believed that strings cause density perturbations that 

lead to the formation of massive scale structures (like 

galaxies) in the Universe (Zel'dovich [5,6]). These strings 

contain stress energy and are divided into geometric 

strings and massive strings. According to the grand 

unified theories (Everett [7], Vilenkin [8]), those strings 

arose during the transition of phases when the temperature 

went down beneath some critical temperature soon after 

the explosion of Big-Bang. 

A higher-dimensional cosmological model plays a very 

important role in various aspects of the early cosmological 

evolution of the Universe. The higher dimensional model 

was introduced by T. Kaluza [9] and O. Klein [10] in an 

effort to unify gravity with electromagnetism. It is not 

possible to unify the gravitational forces of nature in 

typical four-dimensional space-times. As a result, higher-

dimensional theory may be applicable in the early stages 

of evolution. The study of higher-dimensional space-time 

gives us an important idea about the Universe that 

"Universe was much smaller at the beginning of time than 

the Universe we see today". There may be nothing inside 

the equation of general relativity that can restrict the 5 

dimensions from 4 dimensions.  In fact, with the evolution 

of time, the fixed four dimensions x, y, z and t expand, on 

the other hand the extra dimensions contract to the 

Planckian length, which cannot be detect with the 

experimental facilities available in present Universe. So, 

many researchers have been attracted to research the 

cosmological problems within the area of higher-

dimensional cosmic strings and have already studied 

different five-dimensional space-time with various 

Bianchi type models in various aspects. A cosmological 

model in Bianchi type-I universe in higher dimension with 

string was investigated by Krori et al. [11] where they 

found that the strings and matter coexist in the evolution 

of the universe. Already many authors have studied 

different string cosmological models within the 

framework of general relativity in different context in 

higher-dimensional space-times [12-30]. 

Bulk viscosity played a key role in the early cosmological 

evolution of the Universe. The mechanism of bulk 

viscosity in cosmology has piqued the interest of many 

researchers due to its significant role in describing the 

Universe's high entropy in the modern era. The impact of 

viscosity on the evolution of cosmological models could 

be effecting with counteracting gravitational contraction 

or expansion, levitating the preliminary singularity, 
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growing a bounded model, modification of the impact of 

the pressure and the energy density at the time of 

cosmological evolution. Misner [31] investigated the 

effects of bulk viscosity on the cosmological evolution of 

the Universe. Nightingale [32] was also one of the 

researchers who investigated the various roles of bulk 

viscous fluids in cosmology. Several researchers have 

used the well-known concept of general relativity to 

investigate its impact on the evolution of the Universe. 

Some of the famous researchers [33-43], who have 

already studied several Bianchi models in the field of 

general relativity with bulk viscosity. 

The preceding discussion inspired us to investigate 5-

dimensional string cosmological models with particles 

attached in Bianchi type-I space-time with bulk viscosity 

in GR to investigate the various possibilities of the 

Bianchi type model Universe. In addition, the parameters 

in our model Universe are thoroughly discussed. 

2. Materials and methods 

For a bulk viscous cloud string, the energy-momentum 

tensor is given by 

)( ijjijijiij guuxxuuT +−−=  , (1) 

Where, 𝜌 is the energy density 𝜆 is the tension density of 

the string and they are related as, p += , where 

p
 
is the particle density of matter, 𝜉 is the coefficient 

of viscosity and 𝜃 is the expansion scalar. The co-

ordinates are co-moving, 
ix is the unit vector (space-like) 

in the direction of strings and 
iu is the five-velocity vector 

which satisfies the conditions 
i

i

i

i xxuu −=−= 1   and  ,0=i

i xu  (2) 

A Bianchi type-I metric in 5-Dimensional space-time is 

considered in the form of 

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2𝑑𝑥2 + 𝑏2𝑑𝑦2 + 𝑐2𝑑𝑧2 + 𝐷2𝑑𝑚2, (3) 

Here 𝑎, 𝑏, 𝑐 and 𝐷 are the metric functions of cosmic time 

t alone and the extra co-ordinate "𝑚" is considered to be 

space-like. 

For the above metric lets 

xx =1
, yx =2

, zx =3
, mx =4

 and tx =5
 ,   (4)  

Here without loss of generality we can take 

)1,0,0,0,0(=iu  and  ),0,0,0,0,( 1−= axi

 
(5) 

The Einstein's field equation is written as 

ijijij TRgR −=−
2

1
, (6)    

For the metric (3) by using the equations (1)-(2) and (4)-

(5) in the field equation (6) yields 
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Where an over dot and double over dot denote the first 

derivative and the second derivative w.r.t. cosmic time `t' 

respectively. 

From equations (8),(9),(10) the following equations are 

deduced 
𝑏̇

𝑏
−

𝑐̇

𝑐
=

𝑘1

𝑎𝑏𝑐𝐷
     , (12) 

𝑏̇

𝑏
−
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𝐷
=

𝑘2

𝑎𝑏𝑐𝐷
   , (13) 

𝑐̇

𝑐
−

𝐷̇

𝐷
=

𝑘3

𝑎𝑏𝑐𝐷
  , (14) 

Here 𝑘1, 𝑘2, and 𝑘3 are the constant of integration. 

Without loss of generality, we choose 𝑘1 = 𝑘2 = 𝑘3. 
Equation (12) to (14) yields 

 𝑏 = 𝑐 = 𝐷  , (15) 

Using equations (15) in the equations (7)-(11), we get 

3
𝑏̈

𝑏
+ 3

𝑏̇2

𝑏2 = 𝜆 + 𝜉𝜃  , (16) 

𝑎̈

𝑎
+ 2

𝑏̈

𝑏
+ 2

𝑎̇𝑏̇

𝑎𝑏
+

𝑏̇2
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3
𝑎̇𝑏̇

𝑎𝑏
+ 3

𝑏̇2

𝑏2 = 𝜌   , (18) 

The equations (16)-(18) represents a system of three-

independent equations involving five unknowns 𝑎, 𝑏, 𝜌, 𝜆 

and 𝜉. In order to obtain deterministic solution, two more 

physical conditions involving these variables are required. 

Let us consider these two physical conditions as “The 

shear scalar σ is directly proportional to the expansion 

scalar 𝜃”, so that we may take (Collins et al. [44], Kiran 

et al. [45]). 

𝑎 = 𝑏𝑛, (19) 

Where 𝑛 ≠ 0 is a constant and it will describe the 

anisotropy of the space-time. 

And “the average scale factor is an integrating function of 

time” (Saha et al. [46]) 

𝑟(𝑡) = (𝑡𝑘𝑒𝑡)
1

𝑙  , (20) 

Using the equations (15), (19) and (20), we obtained 

𝑏 = (𝑡𝑘𝑒𝑡)
4

(𝑛+3)𝑙  , (21) 

So, the directional scale factors 𝑎, 𝑏, 𝑐 and 𝐷 are obtained 

as  

𝑎 = (𝑡𝑘𝑒𝑡)
4𝑛

(𝑛+3)𝑙,  𝑏 = 𝑐 = 𝐷 = (𝑡𝑘𝑒𝑡)
4

(𝑛+3)𝑙  , (22) 

By the use of the equations (22), the metric (3) becomes 

𝑑𝑠2 = −𝑑𝑡2 + (𝑡𝑘𝑒𝑡)
8𝑛

(𝑛+3)𝑙𝑑𝑥2 + (𝑡𝑘𝑒𝑡)
8

(𝑛+3)𝑙(𝑑𝑦2 +
𝑑𝑧2 + 𝑑𝑚2) , (23) 

The equation (23) is a 5-dimensional Bianchi type-I string 

cosmological Universe. 

3. Results 

For this model, the Spatial Volume is 

𝑉 = (𝑡𝑘𝑒𝑡)
4

𝑙   , (24) 

The expansion scalar 𝜃 which determines the volume 

behavior of the fluid is given by                                                                                                                                                                                                                                                                 

𝜃 =
4(𝑡+𝑘)

𝑙𝑡
  , (25) 

At the initial epoch 𝑡 → 0, expansion scalar 𝜃 → ∞ and →
4

𝑙
 , when 𝑡 → ∞. 

Hubble's parameter (𝐻) is given by 

𝐻 =
(𝑡+𝑘)

𝑙𝑡
  , (26) 

Using equation (18), the energy density of the model is 

obtained as 
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Figure 1. Depicts this behavior of volume 𝑉 verses time t. Also, 

when 𝑡 → ∞, scale factors 𝑎, 𝑏, 𝑐 and 𝐷 are found to be infinite. 

 

Figure 2. Variation of  𝜃, 𝐻 vs. time 𝑡. 

 

Figure 3. Variation of energy density 𝜌 vs. time t.                                                

 

Figure 4. Variation of tension density 𝜆 vs. time t. 

      

Figure5. Variation of particle density 𝜌𝑝vs.  t. 

 

 
Figure 6. Variation of𝜌, 𝜌𝑝vs. time t. 

 

Figure 7. Variation of q vs. time t. 

                            

Figure 8. Variation of 𝜎 vs. time t. 
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𝜌 =
48(𝑛+1)(𝑡+𝑘)2

𝑙2(𝑛+3)2𝑡2   , (27) 

Case 1: When 𝜉 = 𝜉0 =constant, i.e., the bulk viscosity 

is constant function. 

The tension density and the particle density of the string 

are obtained as 

𝜆 =
96(𝑡+𝑘)2

𝑙2(𝑛+3)2𝑡2 −
12𝑘

𝑙(𝑛+3)𝑡2 − 𝜉𝑜
4(𝑡+𝑘)

𝑙𝑡
  , (28) 

𝜌𝑝 =
6(𝑛−1)2(𝑡+𝑘)2

𝑙2(𝑛+3)2𝑡2 +
12𝑘

𝑙(𝑛+3)𝑡2 + 𝜉𝑜
4(𝑡+𝑘)

𝑙𝑡
  , (29) 

Case 2: When, 𝜉 = 𝜉(𝑡), i.e., the bulk viscosity is 

function of time. 

The bulk viscosity (𝜉)is obtained as 

𝜉 =
4(𝑛2+2𝑛+2)(𝑡+𝑘)

(𝑛+3)2𝑙𝑡
−

(𝑛+2)𝑘

(𝑛+3)𝑡(𝑡+𝑘)
  , (30) 

For this case the tension density and the particle density 

of the string are obtained as 

𝜆 =
(64−16n2−32n)(𝑡+𝑘)2

𝑙2(𝑛+3)2𝑡2 +
4𝑘(𝑛−1)

𝑙(𝑛+3)𝑡2   , (31) 

𝜌𝑝 =
(22n2+20n+38)(𝑡+𝑘)2

𝑙2(𝑛+3)2𝑡2 −
4𝑘(𝑛−1)

𝑙(𝑛+3)𝑡2  , (32) 

The expression of deceleration parameter for this model 

is obtained as 

𝑞 = −1 +
𝑘𝑙

(𝑡+𝑘)2   , (33) 

Shear scalar is given by 

𝜎2 =
6(𝑛−1)(𝑡+𝑘)2

𝑙2(𝑛+3)2𝑡2   , (34) 

From (25) and (34), we obtain 

lim
𝑡→∞

𝜎2

𝜃2 =
3(𝑛−1)2

2(𝑛+3)2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, for 𝑛 ≠ 1  , (35) 

Where n can never be −3. Therefore, the model does not 

approach isotropy for large value of t for 𝑛 ≠ 1 (Asgar & 

Ansari[47]) but it approaches to isotropy for 𝑛 = 1. Also, 

the mean anisotropy parameter is  

∆=
3(𝑛−1)2

2(𝑛+3)2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, for 𝑛 ≠ 1. (36) 

As a result for 𝑛 ≠ 1, the model (23) has a constant 

anisotropy parameter throughout the evolution and it 

approaches isotropy for 𝑛 = 1 (Asgar&Ansari [47]). 

4. Discussion 

Taking 𝑘 =  𝑙 = 1; 𝑛 =  2; 𝜉𝑜 = 1, the variation of the 

parameters of model are shown by the figures. The 

behavior of parameters of the  model can be discussed as 

From the equation (24), it is observed that the spatial 

volume 𝑉, is an increasing function of cosmic time t.    

Figure 1: Variation of Volume 𝑉 vs. time 𝑡.  

It increases exponentially and evolves with zero volume 

at 𝑡 = 0 and it becomes infinite as 𝑡 → ∞.                 

From equations (25) and (26) and their respective 

graphical presentations (figure 2), it is seen that at the 

initial epoch of cosmic time 𝑡 = 0, both the expansion 

scalar 𝜃 and the Hubble's parameter 𝐻 are infinite and are 

decreasing functions of time t approaching to finite values 

at 𝑡 → ∞.  

The expression for energy density 𝜌is given by equation 

(27). It is a decreasing function of cosmic time 𝑡 and 

satisfies the energy condition 𝜌 ≥ 0 for all 𝑛 ≥ −1. Its 

variation against cosmic time is presented in figure 3, 

which also shows that 𝜌 decreases with   time t and 

initially when 𝑡 → 0, then 𝜌 → ∞. So, it has an initial 

singularity. 

equation (28) shows that the tension density is positive 

𝜆 ≥ 0 for all values of cosmic time 𝑡 when bulk viscosity 

is constant (𝜉 = 𝜉0 =constant). Initially at 𝑡 → 0, 𝜆 is 

very large(attains the peak value) and just after that it 

becomes a decreasing function of cosmic time 𝑡 and 

finally tends to a very small positive quantity. The 

variation of tension density 𝜆 against cosmic time t is 

graphically presented in figure 4.                                                                                                                                                                                                                                                                             

Initially at 𝑡 → 0, the value of particle density 𝜌𝑝 is very 

large (attains the peak value) when the bulk viscosity is 

constant (𝜉 = 𝜉0 =constant). The value of 𝜌𝑝 decreases 

with the increase of time and approaches to a constant 

value at infinite time, which shows that there will remain 

a finite number of particles in our Universe. This may 

correspond to the matter dominated era. 

When, 𝜉 = 𝜉(𝑡), then 𝜉 is a decreasing function of time t, 

decreases from 𝜉 → ∞ to a small finite value. In this case 

also both 𝜆 and 𝜌𝑝 are very large and decrease to small 

finite value with the passes of time. 

Figure 6 depicts the comparative variation of 𝜌𝑝and 𝜆 

against cosmic time, it can be seen that | 𝜆 |<|𝜌𝑝| and so 

string tension density 𝜆 vanishes more rapidly than the 

particle density 𝜌𝑝, describing that the string vanishes in 

the late time, leaving particles only. As a result, our model 

is realistic. 

The expression in equation (33) shows that the DP(q) is a 

decreasing function of time 𝑡. Initially at 𝑡 = 0 the DP is 

negative (−1 ≤ 𝑞 ≤ 0) for all 𝑘 ≥ 𝑙 and then it decreases 

with the increase of time and at infinite time it tends to 

−1. It can be confirmed from the graph of q vs. cosmic 

time t presented in figure 7. It means that this model is 

found to be expanding with time for all𝑘 ≥ 𝑙. And 

since𝐻 > 0, 𝑞 < 0 for 0 < 𝑡 < ∞, our model Universe 

obtained here shows the expanding and accelerating 

Universe. As a result, our model represents an incredibly 

interesting model Universe that should be investigated for 

a desirable feature of a meaningful string model. 

equation (34) and figure 8 gives us an idea about shear 

scalar 𝜎 which is infinite at initial epoch and it approaches 

to zero at 𝑡 = ∞, for 𝑛 ≠ 1, explaining a shearing model 

Universe throughout its evolution. 

Since, lim
𝑡→∞

𝜎2

𝜃2 =
3(𝑛−1)2

2(𝑛+3)2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, for 𝑛 ≠ 1, so 

the model does not approach isotropy for large value of 

time t (Asgar & Ansari [47]). Also, from the expression 

of Hubble's expansion factor equation (26), we found that 
𝑑𝐻

𝑑𝑡
 is negative which indicates that our model corresponds 

to an expanding Universe, which starts evolving at 𝑡 = 0 

and is expanding with an accelerated rate. But the model 

approaches to isotropy for 𝑛 = 1. The anisotropy 

parameter, ∆=
3(𝑛−1)2

2(𝑛+3)2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≠ 0, for 𝑛 ≠ 1 but 

∆=
3(𝑛−1)2

2(𝑛+3)2 = 0, for 𝑛 = 1. Thus, the model Universe is 

anisotropic one throughout its evolution for 𝑛 ≠ 1  but 

approaches to small isotropy whenever, 𝑛 = 1. 

5. Conclusions 

In this paper, the Einstein's field equation in five-

dimensional Bianchi type-I model in the context of 
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general theory of relativity has been obtained and solved 

by the use of certain physical assumptions, which are 

agreeing with the present observational findings by 

considering bulk viscosity as (i) constant quantity and (ii) 

functions of cosmic time. In both cases, the model 

represents an exponentially expanding and accelerating 

Universe that starts with volume 0 and stops with infinite 

volume. The model has an initial singularity and will 

eventually approach the de-Sitter phase (𝑞 = −1). It also 

agrees with the energy conditions 𝜌 ≥ 0  and 𝜌𝑝 ≥ 0 . 

Although the tension density and particle density are 

comparable, the tension density disappears faster than the 

particle density, leaving only the particles. So, our model 

is representing a matter-dominated Universe that satisfies 

current observational data. The model is anisotropic one 

and shearing throughout its evolution for 𝑛 ≠ 1  but 

approaches to small isotropy whenever𝑛 = 1. 
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