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Abstract 
The propagation of nonlinear quantum dust ion-acoustic (QDIA) solitary waves in a unmagnetized quantum plasma whose 
constituents are inertialess quantum electrons and  positrons, classical cold ions and stationary negative dust grains are studied by 
deriving  the Korteweg–de Vries (KdV) equation under the reductive perturbation method. Quantum Hydrodynamic (QHD) 
equations are used to take into account the quantum diffraction in quantum statistics corrections. It is shown that depending on some 
critical values of the dust density (d) which is function of quantum diffraction parameter (H), both rarefactive and compressive type 
of solitons can exist in the model plasma. Further, the amplitude and width of both solitons increase as d increases. Moreover,  it is 
pointed out that an increase in quantum diffraction parameter, decreases the width of  compressive soliton but  increases the width of  
rarefactive soliton, and the amplitude of both solitons is  independent of H. The present investigation could be useful for researches 
on astrophysical plasmas as well as for ultra small micro- and nano- electronic devices. 
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1. Introduction  
Quantum plasma is characterized by high-plasma 
particle number densities and low-temperatures, in 
contrast to classical plasma which has high-temperatures 
and low particle number densities. These plasmas obey 
the Fermi-Dirac distribution leading to the Fermi 
pressure and new forces arising due to the Bohm 
potential [1] play a vital role. The de Broglie wavelength 

of plasma particles is defined as (2 )Bj j Tjh m V   

with jm and TjV  being the mass and thermal velocity of 

jth species. Furthermore, quantum effects associated 
with strong density correlation start playing a significant 
role when de-Broglie wavelength is larger than average 

interparticle distance

1

3( )d n



 , i.e., 1.Bn   

Three well known mathematical formulations to 
describe the dynamics of quantum plasmas are 
Schrodinger-Poisson model, Wigner-Poisson model and 
quantum hydrodynamic (QHD) model. QHD model is a 
useful approximation to study short scale collective 
phenomena such as waves, instabilities, and nonlinear 
structures, etc. in quantum plasmas. This model 
generalizes the fluid model for plasmas and takes into 

account the macroscopic variables only, i.e., density, 
fluid velocity, stress tensor and electrostatic potential. 
These models have been discussed in detail in Manfredi 
and Haas [1] and Haas [2]. 

Quantum plasmas are common in different 
environments, e.g. in superdense astrophysical bodies [3] 
(i.e. interior of Jupiter, massive white dwarfs and 
neutron stars), in intense laser-solid density plasma 
experiments [4, 5, 6], and in ultrasmall electronic 
devices (e.g. in microelectronics, semiconductor devices 
[7], quantum dots, nanowires [8], carbon nanotubes [9], 
quantum diodes [10], ultracold plasmas [11], and 
microplasmas [12]).  

Quantum plasmas have received great attention in 
recent decades mainly due to the wide applications 
mentioned above [13-19]. Many of these researches in 
quantum plasmas are dedicated to electron-positron-ion 
(e-p-i) quantum plasmas, because it is believed that 
enormously high density  e-p-i quantum plasmas may 
exist in astrophysical environments as well as in laser-
solid matter interaction plasmas [20]. 

Many authors have studied the effects of quantum 
diffraction and Fermi pressure on linear and nonlinear 
electrostatic waves in dense e-p-i plasmas. It is found 
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that Bohm potential leads to the wave dispersion due to 
quantum correlation of density fluctuations associated 
with wave-like nature of the charge carriers. For 
instance, Khan and Haque [21] investigated electrostatic 
nonlinear structures in dissipative e- p-i plasma and 
observed that the quantum diffraction parameter 
decreased the width of the ion acoustic solitary wave. Ali 
et al. [22] studied linear and nonlinear ion- acoustic 
waves in an unmagnetized e-p-i quantum plasma and 
found that the solitary waves in this plasma behaved 
quite differently than that of ordinary e-i plasma. In 
particular, they found that an increase in positron 
concentration decreased the amplitude and width of 
solitary waves; and the ratio of positron Fermi 
temperature to electron Fermi temperature increased the 
amplitude and width of the solitary waves. 

Moreover, in some quantum plasmas in addition to 
electrons, ions, and positrons, an additional component 
of dust particles can also exist; for instance, 
microelectronic devices and metallic nanostructures, 
space and astrophysical plasmas, plasma coating, 
tokamak edges, and interplanetary spaces are usually 
doped or contaminated by the presence of highly charged 
dust impurities. The presence of dust particles changes 
the equilibrium condition and introduces new types of 
ion acoustic waves. So it is therefore interesting and 
worthwhile to examine the effect of dust grain density as 
well as quantum diffraction parameter on the quantum 
dust ion acoustic (QDIA) waves in e-p-i quantum 
plasma. To the best of our knowledge, no investigation 
for an e-p-i-dust plasma has been made of the nonlinear 
propagation of electrostatic waves. 

Therefore, in this study, QDIAS waves has been 
investigated in an unmagnetized, collisionless four 
component quantum plasma containing inertialess 
quantum electrons and positrons, classical cold ions and 
stationary negative dust grains. It has also been 
investigated that how the quantum corrections and the 
presence of dust density modify the wave structures in 
quantum e-p-i-dust plasma. In the present study, first the 
basic set of equations for QDIAS waves in e- p- i-dust 
plasma is presented. Derivation of KdV equation is 
given using reductive perturbation method [23]. Then the 
solutions of KdV are investigated. Results of this study 
would be helpful for understanding the structures that 
may occur in space plasmas and to find the properties of 
dense astrophysical (i.e., white dwarfs and neutron 
stars). 

 

2. Basic equations 
Here a one-dimensional, unmagnetized collisionless 
four-component quantum dusty plasma consisting of 
inertialess quantum electrons and positrons, classical 
cold ions and stationary negative dust grains to study the 
nonlinear propagation of ion acoustic solitary waves. It 
is also assumed that the plasma particles for a one 
dimensional zero-temperature Fermi gas obey the 
pressure law [24]. 
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where j equals e for electrons and p for positrons. mj  is 

the mass,  
1 2

2Fj B Fj jV K T m  is the Fermi speed, KB 

is the Boltzmann constant, 
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 is the 

Fermi temperature and  is the Planck constant. 
Furthermore, nj is the number density with its 
equilibrium value nj0. At equilibrium, the charge 

neutrality condition is
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and 0dz is the dust charging 

state. The normalized basic set of equations for DIAW 
are given below,  

,t x xu u u       (2) 

  0,t i x in n u    (3) 

221
0,

2

x e
x x e x

e e

nH
n

n n
 

 
      
  

 (4)
 

22

0,
2

x p
x x p x

p p

nH
n

n n


 

 
      
 
 

 (5) 

    2 1 1 1 .x d e d p id n d n n d           (6) 

The number density, nj (j =e, i , p, d), of the jth species 
are normalized by their unperturbed density nj0, the 
electrostatic wave potential   is normalized by 

B FeK T e , and the fluid ion velocity u is normalized by 

quantum ion-acoustic speed  1 2
.q B Fe ic K T m The 

space and time coordinates (x and t) are normalized, 
respectively, by the quantum Debye 

length  
1 2

2
04D B Fe iK T e n  and the ion plasma 

period  
1 2

1 2
04 .pi i in e m 


  Further, e pm m m  ,

,Fp FeT T   1 1 1d d p d      , 0 0i en n  . The 

nondimensional quantum diffraction parameter H is 
defined as 2pe B FeH K T   where

 

 
1

2 2
04pe e en e m  . 

Quantum diffraction effects appear in this system 
through third term of eqs. (4) and (5), and quantum 
statistical effects have been shown through the  second 
term of eqs. (4) and (5). 
 

3. KdV equation 
Now, KdV equation is derived from eqs. (2)-(6) by 
reductive perturbation technique. The stretched 

coordinates  
1

2 x t     and 

3

2 t   are introduced 

where ε is the small nonzero parameter proportional to 
the amplitude of the perturbation and   is the linear 
wave velocity. The perturbed quantities can be expanded 
as 
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2
1 21 ,j j jn n n      

2
1 20 ,u u u      (7) 

2
1 20 .         

Substituting the expressions from eq. (7) along with 
stretching coordinates into eqs. (2-6) and collecting the 
terms in different orders of ε. The lowest orders in ε, i.e., 

O( ) and 
3

2O ( ) , leads to the following relations: 

1 1,en   (8) 
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1
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
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Similarly 2O ( )  and 
5

2O ( )  comes out to be: 

 2 2 1 1 1 ,i i in u n n u             (13) 
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Eliminating the second order quantities from the above 
equations using the first order relations, the following 
Korteweg-de Vries (KdV) equation is obtained: 

3 0,A B            (18) 

which 1   and the coefficients of nonlinearity (A) 

and dispersion (B) are defined as 
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Note that the primary effect of quantum diffraction of 
electrons and positrons is the wave dispersion as it does 
not contribute in the nonlinearity coefficient A. To find 
the steady state solution of eq. (18), independent 
variables of   and   are being transferred into one 

variable 0u     where u0 is the normalized constant 
 

speed of the wave frame. Applying the boundary 
conditions as ; 0 , 0d d  , and 

2 2 0d d   the possible stationary solution of eq. (18) 

is obtained as:  

 
 

Figure 1. Critical values of d against H. 9.17p   for 1  . 
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where 03m u A   and 
0

4B
w

u
  are the amplitude 

and width of the soliton respectively. 
 

4. Compressive and rarefactive solitons 
Solitary wave structure is found due to a delicate balance 
between the dispersive effect and nonlinear effect. 
Relative strength of these two effects determines the 
characteristic of such solitary wave structure. 
Coefficients A and B thus, play a crucial role in 
determining the solitary wave structure. From eqs. (19) 
and (20), it is found that these coefficients get modified 
by dust density and quantum effects. So it is important to 
study the dependence of these coefficients on dust 
density (d) and quantum diffraction parameter H. The 
coefficient A is independent of H but depends on d and 
the coefficient B depends interestingly on d and H. 
Calculations show that the value of B vanishes at some 

value of d (say Cd ), where Cd is a function of  , p and 

H. It means that for a certain value of this parameter, 
there exist a critical value for dust density in which KdV 
soliton disappears. For 1  , this critical value is 

2 21 (1 4 ).Cd p H H     The continuous curve in 

figure 1 shows the variation of Cd  with H, which is the 

solution of B=0. From eq. (21) it is found that in all 
physically acceptable situation with 0B   (below) and 

0 0u  , only compressive solitary wave structure is 

obtained and it is clear that no soliton solution is possible 
for 0B   (above) with velocity 0 0u  . However, for 

0B   formation of solitary wave structure is possible 

only for 0 0u  . In this case, rarefactive soliton is 

obtained. Therefore, from the sign of B, one can show 
that only compressive KdV solitons can propagate in the 

plasma for Cd d  (B > 0) which is below the 

continuous curve, and only rarefactive KdV solitons can 

be launched when Cd d  ( 0B  ) which is obtained  
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Figure 2. QDIA compressive and rarefactive solitons for different 

values of d, with 1.3H  , 0 0.3u  , 1   and 9.17p  . 

Figure 3. QDIA compressive solitons for different values of d, 

with 0.8H  , 0 0.3u  , 1   and 9.17p  . 

 

  
d 

(a) 
d 

 (b) 
Figure 4. (a) Dependence of QDIA compressive soliton amplitude ( mC ) on d. (b) Dependence of QDIA compressive soliton 

width (wC) on d.Other parameters are 0.8H   ، 0 0.3u  ، 1   and 9.17p  . 
 

 
Figure 5. QDIA rarefactive solitons for different values of d, 

with 1.3H  , 0 0.3u   , 1   and 9.17p  . 

 
above the continuous curve in figure 1.  

Figure 1 shows that for a plasma with H=1.3, the 
amplitude of KdV solitons would be positive for small 
values of d (for instance d=3), while for larger ones 

(d 4 ), there are negative potential solitons ( Cd d ). 

Figure 2 shows the effect of dust density on soliton 
with constant H (=1.3). Moreover dust density affects the 
structure of compressive and rarefactive solitons (figures 
3 and 5). Figures 4 (a) and 4 (b) respectively show that 
the amplitude of compressive soliton and its width that 
increases with the increase of d. Also, from figure 6, it is 
clear that the amplitude and width of rarefactive soliton 
significantly increase as d increases. 

Figures 7 and 8 show the effect of H on soliton with 
constant d (=4). From figure 1, it is clear that for a 
plasma with d=4, compressive soliton can exist for small 
values of H (for instance 1.268H  ) and rarefactive 
soliton can exist for larger ones ( 1.268H  ). 
Moreover, quantum diffraction parameter (H) affects the 
structure of compressive and rarefactive solitons 
(Figures 7 and 9). It is shown that the amplitude of both 
solitons does not depend on the quantum diffraction 
parameter H, but the width of compressive soliton 
decreases significantly (Figure 8), and the width of 
rarefactive soliton increases (Figure 10) as H increases. 
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 (a) 
d 

 (b) 
Figure 6. (a) Dependence of QDIA rarefactive soliton amplitude (

mR ) on d.(b) Dependence of QDIA rarefactive soliton width (wR) 

on d. Other parameters are 1.3H  , 0 0.3u   , 1   and 9.17p  . 
 

  
Figure 7. QDIA compressive solitons for different values of H, 

with 0 0.3,u  9.17p  , 1  , 4d  . 

Figure 8. Dependence of QDIA compressive soliton width on 

H. Other parameters are 0 0.3,u  9.17p  , 1  , 4d  . 

 
 

Figure 9. QDIA rarefactive solitons for different values of H, 

with 0 0.3,u   9.17p  , 1 , 4d  . 

Figure 10. Dependence of QDIA rarefactive soliton width on 

H. Other parameters are 0 0.3,u   9.17p  , 1 , 4d  . 

 

5. Results 
In this study, the role of dust density and quantum 
effects on QDIA solitons in an unmagnetized four 
component quantum plasma have been investigated. 
KdV equation has been derived and its stationary 
localized solutions has been obtained. It is shown that 
the formation of both compressive and rarefactive 
solitary wave structure is possible in quantum plasma 
with quantum electrons and  positrons, classical cold 

ions and stationary negative dust grains. There exists a 
critical value of dust density depending on quantum 
diffraction parameter, below which compressive soliton 
and above which a rarefactive soliton formation are 
possible. Furthermore, it is shown that the amplitude and 
width of both solitons increase as dust density increases.  

Also, the amplitude of both solitons is unaffected by 
the H but the width of compressive (rarefactive) soliton 
decreases (increases) as H increase. It is hoped that 

mR

H 
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current findings can be applicable to highly degenerate 
dense astrophysical compact objects such as white 
dwarfs. 
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