Downloaded from ijpr-old.iut.ac.ir at 10:57 IRST on Sunday January 10th 2021

IRANIAN JOURNAL OF

1 £ § £ 4 & ¢ 4 Iranian Journal of Physics Research, Vol. 3. No. 4, 2003
Pure SU(3) potentials in the fat-centre-vortices model
S Deldar
Department of Physics, Faculty of Science, Tehran University, Tehran, Iran
(Received 10 August 2002; accepted 8 April 2003)
Abstract

The potentials between static sources in various representations in SU(3) are calculated on the basis of the fat-centre-
vortices model of Faber, Greensite and Olejnik. At intermediate distances, potentials are in qualitative agreement with
“Casimir scaling,” which says that the string tension is proportional to the quadratic operator of the representation. At
large distances, screening occurs for zero-triality representations; for the representations with non-zero triality the string

tension equals that of the fundamental representation.
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1. Introduction

Besides numerical calculations, there have been attempts
to introduce models, which explain quark confinement.
The centre vortices model [1,2] introduced in the late
1970’s by ‘t Hooft is one of these attempts. A centre
vortex is a topological line-like (in D=3 dimensions) or
surface-like (in D=4 dimensions) field configuration
which has some finite thickness. The vortex carries
magnetic flux quantized in terms of elements of the
centre of the group. The fluxes form narrow tubes with
constant energy per unit length (surface). In order for
the vortex to have finite energy per unit length, the
gauge potential at large transverse distances must be a
pure gauge. However, the gauge transformation which
produces that potential is non-trivial. It is discontinuous
by an element of the gauge centre. It is the non-trivial
nature of the gauge transformation, which forces the
vortex core to have non-zero energy and makes the
vortex topologically stable. Faber, Greensite and Olejnik
[3] introduced fat-centre-vortices to obtain confinement
of both fundamental and higher representation static
sources. According to the fat-centre-vortices model, the
vacuum is a condensate of vortices of some finite
thickness. Confinement is produced by the independent
fluctuations of the vortices piercing each unit area of a
Wilson loop.

Faber et al explicitly worked out the model for
SU(2). Here, I give the results of applying their model to

SU(3) (Also in ref. [4], I discussed the results of some
other flux distributions in SU(3) by using this model).
For completeness, I first briefly explain their model and
then apply it to SU(3), using it to study the potentials
between static quarks for the fundamental and a few
other representations.

2. Fat-centre-vortices model

In the fundamental representation of SU(N), a centre
vortex linked to a Wilson loop, has the effect of
multiplying the Wilson loop by the gauge group centre,
27in
N

Based on the vortex theory, the area law for a Wilson
loop is due to the quantum fluctuations in the number of
centre vortices linking the loop. Adjoint Wilson loops
are not affected by centre vortices, unless the vortex core
overlaps the perimeter of the loops. The fat-centre-
vortices model can explain confinement and the Casimir
scaling of higher representation string tensions, if the
vortex thickness is large enough. The average Wilson
loop predicted by this model has the following form:
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where A is the area of the loop C and g, is defined as:

- 1 - >

g, [a} = —Tr(exp{ia. H :l). “)
dr

d, is the dimension of representation r, and {H;} is the

subset of the generators needed to generate all elements

of the centre of the group. (For SU(3), Agis sufficient.)

Vortices of type n and N-n are considered the same,

except that the magnetic fluxes are pointed in opposite
directions.

£ =fy_, and gr[&%(x)}:g:[&g_n(x)} (5)

The parameter frepresents the probability that any given

unit area is “pierced” by a vortex i.e., a line running

through the centre of the vortex tube intersects the area.
The parameter o (x) depends on the vortex

location; in other words, it depends on what fraction of
the vortex core is enclosed by the Wilson loop.
Therefore o (x) depends on both the shape of the loop

and the position X of the centre of the vortex (in the
plane of the loop C) relative to the perimeter. For
example, for SU(2) o (X)is equal to 2, if the core is

entirely inside the minimal area of the loop. It is zero if
the core is entirely outside the minimal area of the loop.
a(x) can be chosen to be [3]:

b
aR (x) = ni| 1 — tanh(ay(x) + E) (6)
in which a and b are constants, and

x—R for|R—-x|¢ x|

y(x) =

-X |[IR—x > x|

(7

where R is the distance between two adjoint sources. x
denotes the x-coordinate of the centre of a vortex where
it pierces the x-t plane. If the time-like sides of the loop
are at x=0 and x=R; then with oy defined in eq. (6):

1. For fixed R, as x — Fo0 , aR(x)—>O.
2. ap (x)=2m, if the vortex core is entirely

contained within the loop.

3. As R — 0, the percentage of any vortex core which
is contained inside the loop goes to zero and
ap (x)—>0.

In eq. (3), by expanding the logarithm to leading
order in f,, expanding grlia} to leading order in &,
and using the identity

1 Cy(r)

T N° -1
one finds

8ji (®)

N-1
Llyy

Gt (x) A, (x)Ch (), (9
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GC:

Cy(r) is the eigenvalue of the quadratic Casimir

operator of the SU(N) group in representation r.

With the approximation of eq. (9), the ratio of the
string tension of representation r to 3 (fundamental) must
be proportional to the ratio of the eigenvalue of quadratic
Casimir operator of representation r to 3(fundamental).
This gives a “Casimir scaling regime.”

Since the parameters o (x) depend on loop size, it

is not trivial that o 1is constant in the adjoint

representation. Even if the adjoint potential were
approximately linear in some interval, it is not obvious
that the fundamental potential would be linear in the
same range of distances. Applying their model to SU(2),
Faber et al. were able to find a region in which the

. . .3
potentials for the fundamental, adjoint and ]25
representations are linear. For large distances, the adjoint

. .3 .
potential was screened, and the J:E representation

potential changed its slope to be the same as the
fundamental one.

Even though the fat-centre-vortices model predicts
some of the expected behaviour of the potential between
static quarks, it has its own limitation, in particular, it
violates the fact that the potential should be always a
convex function of distance [5].

3. Applying the model to SUQ)
Back to eq. (3), f, =fy_,, as mentioned earlier. For

the two types of the vortices
in SUQ), f; =f, =f and

Re gr{&% (x)} =Re gr{&é (x)} =Re gr[&c (x)} .

Therefore, the potential between static sources in
representation r of SU(3) is seen to be

V.(R)=- +Z°° m{a —2f(1-Reg, {a c®m )}))} ,(10)

m=—00

where x

1
m =m+5. I use eq. 6 for ac except the

2n

5
parameters a and b in eq. (6) and fin eq. (10) are free

parameters of the model.
To find the potential V. (R), first I need to find H;

in eq. (4) for each representation: 3, 6, 8, 10, 15-
symmetric, 15-antisymmetric, and 27. For the

normalisation factor is changed to for SU3). The
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A
fundamental representation, Hl = T8 = 78; where

Mg is the diagonal Gell-Mann matrix.

To find Tg of other representations, by using the

tensor method, I define {xlr ;i=1,..., dr} which are the

basis vectors for the space on which the representation
act. The corresponding generators are obtained from [6]

D,®D D D
R I e L v P 1)
X,y ij Xy

Tés are the group generators for representations

D{,D,,D; ®D,. The elements of Tg can be found by
TIxI = dzr c..xl (12)
8r _jzl jor -

Figure 1 shows the potentials for various representations
versus R, intherange R [1,201 . Parameters a and b in
eq. 6 are equal to .05 and 4 respectively, and f'in eq. (10)
is equal to 0.1. It can be seen that, for each
representation, there exists a region in which the
potential is approximately linear. Figure 2 plots the
ratios of the potential of each representation to that of the
fundamental representation. These ratios start out
roughly at the ratios of the corresponding Casimir ratios
which are 2.5, 2.25, 4.5, 7, 4 and 6 for representations 6,
8, 10, 15-symmetric,]15-antisymmetric and 27, respec-
tively. So at least for some region, a rough agreement
with Casimir scaling can be observed. The linear
behaviour of the potential and its proportionality to
Casimir ratio at small and intermediate distances, have
been found in numerical simulations [7,8] for various
representations in SU(3). Figure 3 plots the potentials for
the range of R e[l,lOOJ. Screening occurs for
representations 8, 10 and 27 while the slope of the
potentials for representations 6, 15-symmetric and 15-
antisymmetric changes to the slope of the fundamental
representation. Note the non-convexity near R =0 for
all representations, and especially in the range R =20 to
R =45 for 15-symmetric and the range R =20to
R =40 for representation 15-antisymmetric. The non-
convexity does not go away when another form of
function o in eq. (5) is used.

Screening can be understood as follows: Each
representation can be labelled by the ordered pair (n,m),

with n and m the original number of 3 and 3 which
participated in constructing the representation. Triality is
defined as (n-m) mod 3. Screening occurs for
representations with zero triality: 8 =(L1), 10=(3,0),
and 27 =(2,2). For these representations, as the distance

between the two adjoint sources increases, the potential
energy of the flux tube rises. A pair of gluons pops of

vacuum when this energy is equal or greater thanthe
twice of glue-lump mass. (A glue-lump is the ground
state hadron with a gluon field around a static adjoint
source.) For large distances, the static sources combine
with the octet (8) charges (dynamic gluons) popped out
of the vacuum and produce singlets which screen.
Therefore the potential between static sources is no
longer R dependent. Static sources in representations 10
and 27 transform into the 8(adjoint) first and then §
transforms into the singlet by interacting with the
gluonic field.

8R8=27@10©10®8D1, (13)
10®8=8@10©27®35, (14)
27®8=64@27®27@®35@35@10D10®8.  (15)
Static sources in representations with non-zero triality,
6=(2,0), 15,=(40) and 15,=(2,1), transform into

the lowest order representation 3 and 3 by binding to
the gluonic 8’s which are popped out of the vacuum:

6®8=3D6®15D24, (16)
15,98=48024D15,D15,D6D3D|54, (17)
155 ®8=48@42@15,D15, - (18)

15-symmetric changes to 15-antisymmetric first, so it
needs to interact with the 8’s (popped from the vacuum)
twice to transform to 3. Screening does not occur for
representations with non-zero triality, since there is no
way to get a zero triality representation by crossing a

-
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Figure 1. Potential between static sources induced by fat-centre-
vortices model, for various representations. In the model, the scale of
V(R) and R are arbitrary (adjustable). The fu ndamental representation
is shown by the letter “f”.
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Figure 2. Potential ratio of reach representation to the fundamental
representation (f). The ratios are qualitatively in agreement with the
corresponding Casimir ratios which are 2.5, 2.25,4.5,7, 4 and 6 for
representations 6, 8, 10, 15-symmetric, 15-antisymmetric and 27,
respectively. The Casimir ratios are shown in parenthesis. The scales of
R and V(R) are arbitrary.

non-zero one with any number of 8’s. As a result, the
slope of the linear potentials of the representations with
non-zero triality changes to the slope of the fundamental
one, and a universal string tension is observed for large
R. The representation 15-symmetric requires a larger
value of R to approach the fundamental slope than
representations 6 or 15-antisymmetric - presumably this
is because two pairs of 8’s must be popped from the
vacuum in the 15-symmetric case.

4. Conclusion

By applying the fat-centre-vortices model to SU(3), it
was shown that for each representation at intermediate
distances, there exists a region in which the static
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