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Abstract 
We calculated the drag force for asymptotically Lifshitz space times in (d+ 2)-dimensions with the arbitrary dynamical exponent z. 
We find that at zero and finite temperature, the drag force has a non-zero value. Using the drag force calculations, we investigate the 
DC conductivity of the strange metals. 
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1. Introduction 
A new method for studying different aspects of strongly 
coupled quantum field theories is the AdS/CFT correspondence 
[1-4], which has yielded many important insights into the 
dynamics of strongly coupled field theories. Recently, the 
application of this duality in condensed matter physics, called 
AdS/CMT, has been studied [5]. This duality is very useful to 
study certain strongly coupled systems in CMT by holography 
techniques and to better understand their properties. 
Methods based on AdS / CFT  relate gravity in the 2AdSd  

space to the conformal field theory on the (d+1)-dimensional 
boundary. These conformal field theories are invariant under 
the following scaling transformation 

(1)    , , ,t x t x 
 

 

However, in many condensed matter systems, there are field 
theories with anisotropic scaling symmetry. This 
unconventional scaling can be illustrated as 

(2)    z, , ,t x t x 
 

 

where z is the dynamical exponent. These field theories exist 
near a critical phenomenon and describe multicritical points in 
certain magnetic materials and liquid crystals. In the case of 
z=1, theory benefits from the relativistic scale invariance. For 
z=2, there is a 2+1 dimensional field theory so-called as 
Lifshitz field theory. This theory has a line of fixed points 
parameterized by   and the lagrangian density, which is given 
by 

(3)    222 2 .tdx dt    
    

  

These fixed points are strongly coupled, appearing in strongly 
correlated electrons in zero and finite temperature lattice 

models [8]. Another important theory with unconventional 
scaling in (2) is the theory whose symmetry group is the 
Schrodinger group  S ch 1 , d   and the geometry is given by a 

deformation of the AdS geometry [6]. Many of the most 
interesting examples in the condensed matter theory arise in the 
Lifshitz case. 

In this paper, we consider massive charge carriers 
described by the flavor branes in the Lifshitz space times. As 
discussed in [9], considering the massive charge carriers in this 
background is the case of interest in the modeling of strange 
metals. Gravity duals have been investigated in [7]. 

To calculate the drag force, one should consider a probe 
brane in this background. Adding flavor branes and finite-
density holography has been studied in [11,12]. These probe 
branes are related to a quantum critical theory and we consider 
massive charge carriers interacting with this theory. Notice that 
these carriers do not backreact on the quantum critical system. 
In the massive case, the flavor brane forms a cigar-like shape 
with its tip at 0r  and the charge carriers correspond to the 

strings stretching from the tip of the cigar down to the horizon. 
At finite temperature, one should consider a black brane in the 
background at a finite radial position, hr . As a result, charge 

carriers on the flavor brane correspond to the stretching strings 
from 0r  to the horizon. To calculate the drag force, one should 

consider a stretching string from the flavor brane and use the 
prescription in [16,17,18] to find the energy loss at zero and 
finite temperature cases. 

The most useful application of drag calculations in the 
Lifshitz background has been done in [9]. They have studied 
the phenomenology of strange metals and computed the 
electrical conductivity. We discuss this application of the drag 
force in the last section. Using the drag force calculations, we 
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investigate the DC conductivity of strange metals and derive 
some results [9]. 
 This paper is organized as follows. In the next section, we 
use the proposed solutions in [22- 24] and discuss the energy 
loss of the massive charge carriers. We find that they lose 
energy even at the zero temperature. We compare the result 
obtained for the energy loss of the particles computed in the 
case of the non-relativistic gravity dual to the field theory 
based on the Schrodinger CFT symmetry [13]. Also, in this 
case, the moving particle loses energy at the zero temperature. 
In the section three, we consider the Lifshitz background 
embedded into the string theory [38]. We also find a non-zero 
drag force at the zero temperature. In the last section, we 
discuss computing the DC conductivity from drag calculations. 
While this paper was in the final stages of preparation, it came 
to our attention that the drag force in non-relativistic 
background whose symmetry is Schrodinger  group has been 

done in [39]. This calculation extends the results of [13] and 
confirms a non-zero drag force at the zero temperature. 
 
2. Asymptotic Lifshitz space times 
In this section, we provide the backgrounds necessary for our 
discussions. We consider the non-relativistic holography in 
[22]. In this study, Lifshitz geometry is a solution of the gravity 
coupled to a massive vector field. The (d+2)-dimensional 
spacetime action is 
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where Λ  is the cosmological constant and massless scalar 
field and abelian gauge field are the matter fields of theory. 
The only non-vanishing components of the field strength is 

1  Z d
rtF q e r   , and q  is related to the charge of the 

black hole. Based on this action, one finds the asymptotically 
Lifshitz solution at the zero temperature 
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In this solution, dilaton is not constant. However, exact 
solutions can be found. To calculate the drag force, one should 
consider the flavor probe branes in the background (5) and 
study the moving massive charge carriers. From gauge-string 
duality, we consider a trailing open string in the holographic 
direction. The action of this open string is given by the Nambu-
Goto action 

)6( 0 .S T d d g     

where 0T  is the tension of the string. The coordinates  ,   

parameterize the induced metric abg  on the string world-sheet 

and g  is the determinant of the world-sheet metric ,abg  

)7(    2 22
det ( . ) ,abg g X XX X        

where  ,X     is a map from the string world-sheet into 

space-time, and we define X X  , X X   , and 

.   V W V W G 
 , where G  is the metric. The Lagrangian 

density is given by 0T g   . The string equation of 

motion is obtained as 

)8(  0 .tx x
              
 

  

One has to calculate the canonical momentum densities, 
0 0,x t  , to find the total energy and momentum of the moving 

particle in non-relativistic field theory 

)9(  
0 0

0 0 ,   .t x
h h

E d P d
 

 
      

 
2.1 Drag force at the zero temperature 
Now, we calculate the drag force at the zero temperature. We 
consider a moving heavy point particle on the probe flavor 
brane in the d-dimensional space with the following ansatz 

)10(    1,  ,  ,   0 1 ,it r x x t r x i          

One finds from the equations of motion (2.5) that 
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where C is the constant of motion. The drag force experienced 
by the moving particle is 

)12( 

1
2

1
drag 0 .

z

zF T 
 

    

The drag force is independent of the dimension of space. In 
(10), we considered the string from boundary to infinity; then 
one finds from the numerator that there is no bound on the 
velocity and it can change from zero to infinity. This is because 
of the fact that the dual theory is non-relativistic. This is an 
interesting result because even though the system is at zero 
temperature, the moving particle loses its energy. We consider 
the mass and momentum of the particle as M and P, 
respectively. Then ;P Mv  in the case of constant momentum, 

the drag force will be found as   dragF M v . In this way, 

one finds the friction term as    3 1
0 .

z z
T M v

     

Authors in ref. [13] found a non-zero drag force at the zero 
temperature. They studied the non-relativistic three 
dimensional CFT at the zero and finite temperature. They 
found that unlike the AdS case, where one only gets a casual 
speed limit, in the non-relativistic case, one arrives at no speed 
limit and the non-zero drag force. We also find the same results 
in asymptotically Lifshitz spacetimes with the arbitrary critical 
exponent. As a result, the non-zero drag force could be 
considered as a common property of non-relativistic 
spacetimes. 
 
2. 2. Drag force at finite temperature 
Unlike the case of the Schr odinger  conformal group, it is 

difficult to obtain analytic black hole solutions in Lifshitz 
spacetimes. In fact, the problem of finding analytic exact black 
hole solutions with asymptotically Lifshitz geometry has 
turned out to be a highly non-trivial problem. However, there 
are known solutions. For example, black hole solutions with 

  2z   in four dimensions were studied in [15] and black holes 
in asymptotically Lifshitz spacetimes with the arbitrary critical 
exponent were investigated in [20]. Topological black holes 
and other solutions were proposed in [21, 22]. For other recent 
solutions on Lifshitz black holes, see [26- 32]. We consider the 
black brane solution of (4) in asymptotic Lifshitz (2+1)-
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dimensional spacetime, as proposed in [22] 

)13(  

 
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The matter fields are a massless scalar and an abelian gauge 
field and the other fields remain the same as those in the zero 
temperature case. The temperature is 

)14( 
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and the black hole entropy is given by 
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where Vd  is the volume of the d dimensional spatial 

coordinates ix


. 

We consider the moving heavy point particle in the x  
direction and by following the ansatz in (10), one finds that  
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where C is the constant of motion. From the reality condition 

of the above equation, one finds that 2 2  CC v L r  and Cr  is the 

root of this equation 
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The drag force is given by 

)18( 2 2
drag 0  .cF T L r  

We consider some special cases and derive the drag force as 
follows. 

In the case 2 and 1d z  , there are two dimensional 

spatial coordinates and 1z   means the isotropic theory. The 
drag force in terms of the temperature of the field theory, 

3 4HT r  , is given by 
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Another specific example is known as the Lifshitz model. For 
2 and 2d z   this case appears in the systems of strongly 

correlated electrons in condensed matter physics. Having a 
holographic description for these phenomena would be of great 
importance to investigate some properties of strongly coupled 
systems in the condensed matter. One finds the drag force as 

)20( 
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 
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It is clear that in each case, the temperature dependency of the 
drag force is different. It is straightforward to discuss the drag 
force in other cases with spatial dimensions more than 2d   
and different values for  z . 
 

2. 3. 2R  corrections of the drag force 

Now, we study 2R  corrections. These corrections for five-
dimensional asymptotically Lifshitz spacetimes have been 

studied in [24]. The specific example is the Gauss- Bonnet 
model. Black brane solution has been found perturbatively as 
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where 
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in which GB  is the Gauss-Bonnet coupling constant. And 
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The horizon of the black brane is located at 1u   and the 
boundary is at 0u  . The Hawking temperature is 
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The drag force in the case of 0 1z   has been calculated in [25]. 

We consider the moving heavy point particle in the $x$ 
direction and by following the ansatz in (10), one finds that 
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From the reality condition of the above equation, we should 
find the roots of this equation 
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Regarding this equation, the drag force can be found as 
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Notice that the dependency of the drag force on the 
temperature of the field theory is complicated. 

One can also study the charge effects on the drag force. 
The charged Lifshitz black hole solutions in the general 
(d + 2)- dimensions have been investigated in [25]. Also, the 
Gauss-Bonnet corrections to such black holes in five 
dimensions have been calculated perturbatively. Using these 
solutions, one can study the drag force in these backgrounds. 
 
3. Drag force in the string duals of non-relativistic 
Lifshitz-like theories 
The aim of this section is to study some features of (1+2)-
dimensional non-relativistic field theory using the supergravity 
solution in the type IIB string theory. Since we are dealing with 
string theory, it is natural to consider a semi-classical string in 
this background. However, it is difficult to embed the Lifshitz 
background into the string theory. Some no-go theorems for the 
string theory duals of non-relativistic Lifshitz-like theories 
have been proposed in [36]. They propose that classical 
solutions in type IIA and eleven-dimensional supergravities are 
not possible. (These solutions are expected to be dual to (2+1)- 
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dimensional Lifshitz-like theories.). Based on the holographic 
constructions of the fractional quantum Hall effect (FQHE) via 
string theory, authors of [37] have proposed D3-D7 solutions. 
Using this construction, the embedding of the anisotropic 
background into type IIB string theory was studied in [38]. 
However, the scaling behavior in this solution is different and 
the anisotropy of the scale transformation is only through one 
of the three spatial directions. As a result, it corresponds to a 
classical Lifshitz point. Also, since it has a non-constant 
dilaton, the anisotropic scale invariance only holds at the 
leading order of interactions. In the context of AdS/CFT 
correspondence, an open string can be associated to a Wilson 
loop in the dual field theory and one can consider particle at the 
end of this semi-classical open string at the boundary. 
Regarding this study, we consider a moving point particle in a 
strongly correlated system and calculate the drag force. 
 
3.1. Drag force at the zero temperature 
We study the drag force at the zero temperature. Spacetime 
metric in the Einstein frame is given by [38] 
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This metric is invariant under the scaling 
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;therefore, it is expected to be holographically dual to Lifshitz-
like fixed points with space-like anisotropic scale invariance. 

One can redefine the radius coordinate 2 3r   and rescale 

 , , ,t x y w  accordingly. Then the metric in the string frame 

will be as follows: 
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(30)  
This can be regarded as the gravity duals of Lifshitz-like fixed 
points with 3 / 2z  . 
Now, we study a moving heavy particle in the "x" and "w" 
directions. We expect different behaviors in two directions. 
This is because the "w" direction is an anisotropic direction, 
but "x" is not. 
 
3.1.1. Moving in the x direction, a time dependent solution 
In this case, we study the moving particle in the x direction and 
consider a time-dependent solution as the following ansatz 
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one finds the Nambu-Goto action 
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It would be straightforward to calculate   from the above 
equation 
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where A is the constant of motion. By studying the 

realitycondition for the lagrangian density 0T g    and 

therefore, for 2 , one finds that the constant of motion can be 
chosen arbitrary. In the special case of moving with the speed 

of light, one finds 2 3
drag 0  F T R    . One observes that there 

is a bound on the velocity which was expected because the x 
direction is not the anisotropic direction. 
 
3.1.2. Moving in the ω  direction, a time dependent solution 
In this case, we ask about the moving non-relativistic particle 
in the anisotropic direction. The ansatz is  vt     and 

from the Nambu-Goto action (6), one finds that 
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2  must be a real parameter and with this condition, B can be 
found. Also, it is clear from the numerator of (34) that there is 
no bound on the velocity of particle and it can be changed from 
zero to infinity. This result is reasonable, because the "w" 
direction is anisotropic and the dual theory is non-relativistic. 
As a result, one finds a non-zero drag force on a moving 
particle in the w  direction and at the zero temperature, as 
represented 
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One can consider the momentum and mass of particle as P and 
M, respectively, and use the non-relativistic relation  P M v . 
We rewrite the drag force in terms of P and derive the 
momentum of particle as 
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It would be interesting to calculate the friction coefficient of 

the moving particle. Using the relation   P M v  , one 

finds that the friction coefficient is velocity dependent, 

40     .
T

v
M

   

In this case, although the system is at the zero temperature, the 
moving particle loses its energy. This phenomena has also been 
found by [13], where they considered the non-relativistic three 
dimensional CFT at the zero temperature. 
 
3.2. Drag force at finite temperature 
It was shown that an AdS  space with a black brane is dual to 
the conformal field theory at the finite temperature [4]. We use 
the extension of the AdS/CFT correspondence in the case of an 
anisotropic spacetime. This gravity dual is known as the string 
theory duals Lifshitz-like fixed points [38]. The metric in the 
Einstein frame is 
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where 

)38(   11 3
1  .f r

r


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The constant   represents the mass parameter of the black 
brane. The Hawking temperature is 

)39( 11 311
 .

12HT 


  

We study a moving object in the hot gauge theory and in the bulk 
space, a moving open string should be considered too. Based on 
the Nambu-Goto action of string in (6) and the equation of 
motion in (8), the simplest solution for the equation of motion is 
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constantx  . In this case, the string is stretched from the probe 
D-brane at m   to the horizon at h  , straightforwardly. 

In other words, we have a static particle without any motion. The 
energy of particle in this case is associated with the rest mass of 
the particle, which is obtained by  

)40(  
2

2 20
rest .

2 m h
T R

M   


  

One can compare this result with the rest mass of a static quark 
in the 4 SYM  theory [16]. In our study, one may use the 

relation 2
gapE MC  and interpret (40) as the energy scale of 

bulk excitations at the position of the flavor brane. 
 
3.3. Moving in the x direction, a time dependent solution 
We consider the moving particle in the x direction and consider 
a time-dependent ansatz  x vt r  ; with this choice, one 

finds that 
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From this equation, we can find the critical radius where 
numerator and denominator change their sign 
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Finally, the drag force on the particle is given by 
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It is clear that the moving particle loses its energy at the finite 
temperature case too. 
 
3.4. Moving in the w direction, a time-dependent solution 
It would be interesting to study a moving object in the "w" 
direction. This is an anisotropic direction in which the 
spacetime violates the Lorentz symmetry. One can consider the 
following ansatz 

)44(   , 0, 0, , .X t x y w t r r          

The constant of motion can be considered as D and from the 
equation of motion, one finds that 
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Both numerator and denominator must change sign at the same 
root; from the numerator, one should solve 

11 3 2 3v 0r r     to find the drag force. We name the root 

as cr  and find the drag force as 

)46( 4 3
drag 0  .cF T r  

Based on this relation, one can discuss the drag force too. 
 
4. Discussion 
In this paper we have calculated the drag force for 
asymptotically Lifshitz space times in the (d + 2)- dimensions 
with the arbitrary dynamical exponent z from gauge-string 
duality. We have used the proposed solutions in [22- 24]. The 

finite temperature behavior of Wilson loops as an application 
to strongly coupled gauge theories in 3+1 dimensions has been 
studied in [14,15,]. By analyzing action in (1.3), one concludes 
that the boundary theory can be viewed as a gauge theory in 
2+1 dimensions with a dimensionless coupling constant; as a 
result, the theory may have some features in common with the 
conventional gauge theory in 3 + 1 dimensions [15]. Having 
the Wilson loops on the gravity side, one can study the drag 
force in the gauge theory side. From gauge-string duality, one 
should consider a hanging string from the boundary to the 
horizon. The end point of the string represents the particle that 
is charged under the gauge field. We have considered a moving 
heavy point particle and calculated the drag force at zero and 
finite temperature non-relativistic field theories.  

We have found the energy loss of the moving heavy point 
particle. For the zero temperature background, we found that 
particle loses energy, even at the zero temperature. Also, we 
considered the string theory dual to Lifshitz-like fixed points 
with anisotropic scale invariance, as proposed in [38], and 
studied the drag force. We found a non-zero drag force in the 
case of the zero temperature too. In this case, there are 
anisotropic and isotropic directions. We have found a non-zero 
drag force when particle is moving in these directions in (3.8). 
Then, we compared our results with drag force in the case of 
field theory whose symmetry group is the Schrodinger  group, 
as shown in [13]. In this reference, the energy loss of the 
particle computed in the case of non-relativistic gravity dual to 
field theory with the Schrodinger  CFT symmetry. Also, they 
found that a moving particle loses energy at the zero 
temperature. Based on these studies, we can conclude that this 
could be a common property of non-relativistic field theories. 
Holographic description of strongly correlated systems in 
condensed matter physics implies a non-zero drag force on a 
moving heavy carrier at the zero and finite temperature. 

The most useful application of drag calculations in Lifshitz 
background has been described in [9]. They study the 
phenomenology of `strange metals' and compute the electrical 
conductivity. It would be interesting to relate our results to the 
calculation of the DC conductivity. 

In order to calculate the DC conductivity, an electric field 
should be activated on the D-brane probe and the resultant 

current xJ  can be computed in the boundary [10]. The 

conductivity  ,E T  is found from the Ohm's law 

)47(   2 2
0, ,E T    

where 0  is a constant term arising from thermally produced 

pairs of the charge carriers. By increasing the mass of carriers, 

0  can be made arbitrarily small and the leading term in 

conductivity will be  . Based on the results of [10], we 
discuss the calculation of the leading term in conductivity,  , 
by studying the properties of a moving single string. The 
authors in [10] found that 
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where *r  is the root of the following equation 

)49(    22 2 22 0 .zr f r E   

An important result of [9] is based on the relation (48). This 
equation exhibits the power-law for the DC resistivity, 

2~ z tT J . As discussed in ref. [9], this behavior is generic 

in a regime of dilute charge carriers coupled to a Lifshitz 
matter. Now, we derive this result from our drag force 
calculations. 

We consider the quasi-particle description and write the 
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equation of motion for them at the equilibrium, where the 
external force is f E . At large mass limit, only charge 

carriers contribute to the current and one may express xJ  in 

terms of the velocity of the quasi-particles, x tJ J  . 

Regarding the Ohm's law (  xJ E ), one finds the leading 
term in conductivity as 

)50(  .
tJ

E

  

Based on the drag force calculations at the finite temperature 
and from the numerator of (16), one finds the velocity of the 
quasi-particle as 
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The drag force is related to the constant of the motion C, which 
can be found from the denominator of (16). Also, at 

equilibrium,  22 22C E ; then 
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From (51) and (52), one derives conductivity as 
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which is the same as (48). When the external field is very 

weak, one concludes that * ~r r ; as a result, 2~ t ZJ T  

confirms the result of [9]. 

It would be interesting to study the 2R  corrections to the 
DC conductivity for asymptotically Lifshitz backgrounds. One 
should consider the calculation of the drag force from (25). It is 

straightforward to find 2 2 2
*2 tR L r J    and for small 

electric field, one concludes that * ~r r  where r  is the radial 

horizon related to the temperature of the matter (24). As a 

result, 2R  corrections to conductivity are given by 
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From this equation, one can study the effect of the Gauss-
Bonnet coupling constant GB  on the DC conductivity and 

resistivity. In the case of 0 1,z   one finds the result of [9]. 

Calculating the DC conductivity at the zero temperature is 
straightforward. One should find the velocity of the massive 
charge from the numerator of (11); based on the relation 
between velocity and conductivity, one finds 
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where cr  is not the same as *r  in (53). 

It is interesting to investigate the calculation of conductivity 
from drag force in the type IIB string theory, as studied in [38]. 
We consider the finite temperature matter and turn on an small 
electric field in the "x" and "w" directions. In these directions, 

one finds that 2~ 1x T v and 4 3~ 1 T . As expected, 

conductivity is different in these directions. 
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