Document Type : Original Article

Authors

1 Department of Mathematics, Division of Science and Technology, University of Education Lahore, Pakistan

2 Department of Mathematics, Riphah International University, Faisalabad Campus, Pakistan

Abstract

Two dark energy models $\Lambda \sim (\frac{\dot{a}}{a})^{2}$ and $\Lambda \sim \frac{\ddot{a}}{a}$ are studied by taking into account the gravitational constant G is a time-dependent parameter in the framework of Chern-Simons modified gravity. It is found that the gravitational constant shown the increasing behavior proportional to those of the time parameter for each model. These models are compared with observational results by regulating the values of the parameters. Our investigations indicated that the model $\Lambda \sim (\frac{\dot{a}}{a})^{2}$ is generally attractive in nature while the other model $\Lambda \sim \frac{\ddot{a}}{a}$ coincides to repulsive situation and consequently match with the current scenario of the accelerating universe. We calculated the variation of G(t) which showed that it changes rapidly when the value of $\omega$ is taken between the limit $-1.33 <\omega< -0.79 $. It is viewed that due to the composite influence of time-variable $\Lambda$ and G(t), the universe expanded with acceleration. Further, it is estimated that  the range for variation of G(t) with  proper tuning of parameters $\alpha$ and $\beta$ is given as $-(1.89\pm 0.10)\times 10^{-11}yr^{-1}<\frac{\dot{G}}{G}<0$ which match with Ia type supernova.

Keywords

  1. D N Spergel, R Bean, O Doré, et al., J. Suppl. 2 (2007) 377.
  2. J K Adelman-McCarthy, M A Agüeros et al., J. Suppl. 2 (2008) 297.
  3. N Aghanim, Y Akrami et al., arXiv:1807.06209 (2018).
  4. R Jackiw and S Y Pi, Rev. D 68 (2003). 104012.
  5. A Pasqua, R Da Rocha and S Chattopadhyay, Phys. J. C 2 (2015) 44.
  6. Y S Myung, Eur. J. C 8 (2013) 2515.
  7. M Li, X D Li, S Wang, Y Wang and X Zhang, Cosmol. Astro. Phys. 1 (2009) 014.
  8. Q G Huang and Y Gong, Cosmol. Astropart. Phys. 08 (2004) 006.
  9. E Elizalde, S Nojiri, S D Odintsov, and P Wang, Rev. D 71 (2005) 103504.
  10. A Jawad and A Sohail, Space Sci. 2 (2015) 55.
  11. S Ali and M J Amir, J. Theor. Phys. 12 (2016) 5095.
  12. M J Amir and S Ali, J. Theor. Phys. 4 (2015)1362.
  13. S Ali and M J Amir, AHEP (2019) 1712.09425.
  14. P J Porfi­rio, J B Fonseca-Neto, J R Nascimento, A Y Petrov, J Ricardo and A F Santos, Rev. D 94 (2016) 4.
  15. K Konno, T Matsuyama, Y Asano and S Tanda, Rev. D 78 (2008) 024037.
  16. D Guarrera and A J Hariton, Rev. D 76 (2007) 044011.
  17. KK Nandi, I R Kizirgulov, O V Mikolaychuk, N P Mikolaychuk and A APotapov, Rev. D 79 (2009) 083006.
  18. S Chen and J Jing, Lett. B 679 (2009) 144.
  19. V Silveira and I Waga, Rev. D 56 (1997) 4625.
  20. R F Sistero, Rel. Grav. 11 (1991) 1265.
  21. L B Torres and I Waga, Not. R. Astron. Soc, 3 (1996) 712.
  22. J M Salim and I Waga, Quan. Grav. 9 (1993) 1767.
  23. A V Nesteruk, R Maartens and E Gunzig, Quan. Grav. 4 (1998) 923.
  24. H Stefancic, Lett. B 595 (2004) 9.
  25. X Zhang and F Q Wu, Rev. D 72 (2005) 043524.
  26. A Cetto, L De La Pena and E Santos, Astrophys. (1986) 1641.
  27. D B Guenther, L M Krauss and P Demarque, J. 2 (1998) 871.
  28. T Damour, G W Gibbons and J H Taylor, Rev. Lett. 61 (1988) 1151.
  29. E Gaztanaga, E Garcia-Berro, J Isern, E Bravo and I Dominguez, Rev. D 65 (2001) 023506.
  30. O G Benvenuto, E Garc-Berro and J Isern, Rev. D 69 (2004) 082002.
  31. M Biesiada and B Malec, Monthly Notices of the Royal Astron. Soc. 2 (2004) 644.
  32. C J Copi, A N Davis and L M Krauss, Rev. Lett. 92 (2004) 171301.
  33. J A Belinchón, Astrophysics and space science, 281 (2002) 765.