
Iranian Journal of Physics Research, Vol. 6, No. 3, 2006 
 

Signatures of granular superconductivity and Josephson effects in macroscopic 
measurements: the case of new superconductors 

 

S Senoussi* and F Pesty 
Laboratoire de Physique des Solides, associé au CNRS, Bât. 510, Université Paris-Sud 11, 91405 Orsay cedex, France 

* Corresponding author: E-mail: senoussi@lps.u-psud.fr 

(Received  26 June 2006;  accepted  5 August 2006) 
 
Abstract 
We report systematic investigations of the magnetic superconducting properties of the new superconducting materials (NS): New 
high temperature superconductors (HTS), Organic superconductors (OS), fullerenes, carbon nanotubes, MgB2 etc. We show that, 
contrary to conventional superconductors where the superconducting state can be coherent over several tenths of km, the 
macroscopic coherence range lc of the NS is often as short as 0.1 to 10 µm typically. As a consequence, the magnetic properties are 
dominated by granular-like effects as well as Josephson coupling between grains. Here, we concentrate on HTS ceramics and organic 
superconductors exclusively. In the first case we observe three distinct regimes: (i) At very low field (H < 5 Oe to say) all the grains 
are coupled via Josephson effect and lc can be considered as infinite. (2) At intermediate field (5 < H < 50 Oe, typically) the grains 
are gradually decoupled by H and/or T. (iii) At higher fields all the grains are decoupled and lc roughly coincides with the diameter of 
the metallurgical grains. The case of OS is more subtle and is connected with a kind of order-disorder transition that occurs in most 
of them. For instance, in this study, we exploit quenched disorder (after crossing such a transition) in the κ -(BEDT-
TTF)2Cu[N(CN)2]Br layered organic superconductor to get new insights on both the superconducting state (T ≤ 11.6 K) and the 
glassy transition at Tg, by studying the superconducting properties as functions of annealing time and annealing temperature around 
the glassy transition. Our main result is that the data can be described by a percolation molecular cluster model in which the topology 
and the growth of the molecular clusters obey an Ising spin-glass-like model with Tg ≈ 80 K for the hydrogenated compound and 
Tg ≈ 55 K  for the fully deuterated one. 
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1. Introduction  
Superconductivity was discovered in 1911 by H. 
Kamerling Onnes, of Leiden University, who observed 
that, when cooled to the helium liquid temperature 
(4.2K) the resistivity of mercury falls abruptly to zero. 
However, despite many efforts its microscopic origin 
remained misunderstood until the fifties. However a first 
important macroscopic theory was initiated by F. 
London and H. London in 1935, who modified Ohm's 
Law to obtain the Meissner effect,1 without altering 
Maxwell's equations themselves. In their description [1] 
London brothers used the two-fluid model of Gorter and 
Casimir [2]. This macroscopic theory was then extended 
by Landau and Ginzburg in the more general theoretical 
frame of phase transitions. These macroscopic 
descriptions do not depend on the microscopic origin of 
____________________________________________ 
1. Meissner effect refers to the fact that, below Hc1 the 
superconductor excludes any magnetic field (whether external 
or induced by local super currents), except at the surface in a 
thin layer of thicknessM λ , the London penetration depth. 

superconductivity and are therefore always valid. In fact, 
the link between the Ginzburg-Landau equation and the 
microscopic parameters of superconductivity was 
established by Gor'kov over very general bases [3]. 
 The microscopic origin of superconductivity and its 
quantum coherent nature was definitely demonstrated by 
John Bardeen, Leon Cooper, and John Schrieffer, the 
theory of whom is now known as the BCS theory). 
These theoretical developments gave rise to very intense 
experimental as well as theoretical researches during the 
sixties. Unfortunately, the enthusiasm rapidly declined 
and almost vanished during the early seventies. The 
reasons for such a decline is that until 1980 most solid 
state physicists, including some of the most renowned 
ones, thought that superconductivity was a property of 
metals and metallic alloys exclusively. More 
fundamentally, the same people believed that the 
superconducting transition temperature Tc will never 
exceed about 25-30K making potential industrial 
applications very limited. The first breakthrough in this 
widespread belief was the discovery of 
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superconductivity in an organic conductor in 1980 by D. 
Jérome et al. [4], namely the now famous quasi-one-
dimensional Bechgaard salt (TMTSF)2PF6 (Tc = 1.2K ) 
synthesized in 1980 by Klaus Bechgaard of the 
University of Copenhagen. As it is well known, another 
very fundamental discovery that definitely turned upside 
down the situation was that of high temperature 
superconductors (HTS) by Müller and Bednorz [5] in 
1986. Since then, an impressive number of organic as 
well as high-Tc superconductors have been identified, 
with Tc as high as 138 K for HTS and 15K for OS. 
 It is also worth mentioning that during the last few 
years superconductivity has been detected in a huge 
variety of exotic materials such as fullerenes [6] 
(fullerenes can also be considered as organic conductors, 
however for the sake of simplicity we will not discuss 
these materials anymore here), MgB2 [7], carbon 
nanotubes [8,9] and other materials. Note that 
concerning nanotubes, the manifestation of 
superconductivity was somewhat indirect, via the so 
called “proximity effect” and is still a controversial 
subject, at least as magnetic measurements are concerned 
[10]. Indeed, according to Tang et al. [10] single-walled 
4-Angström diameter carbon nanotubes embedded in a 
zeolite matrix revealed a superconducting transition 
temperature of 15 K. Moreover, the authors claim that 
statistical mechanics calculations based on the Ginzburg-
Landau free-energy functional yield predictions that are 
in excellent agreement with their results. Nevertheless, 
to the best of our knowledge, these results have never 
been reproduced in any research group including the 
authors themselves.2

At this point we note a further significant difference 
between conventional and most of the new 
superconductors. For conventional low-T superconductors 
the superconducting state is in general macroscopically 
coherent even for polycrystalline materials. For instance, 
in a typical high field superconducting commercial 
magnet (made of Nb3Sn with Tc =18.1 K) the 
superconducting state may be coherent over several 
tenths km which corresponds to the whole length of the 
superconducting wire composing the coil magnet. On 
the contrary, most of the new superconductors, 
including all those enumerated above, behave like 
granular superconductors when prepared by standard 
“metallurgical techniques”. Here, the word granular 
means that in some experimental conditions (that will be 
clarified latter) the coherence length is much smaller than 
____________________________________________ 
2. According to our estimate based on (i) the size effect (r/ λ
ratio), (ii) the 1D nature of their carbon nanotubes and (iii) the 
relatively high magnetic field used in their measurements (up to 
5 Teslas) we estimate that, even if we accept that their material is 
really superconducting, the magnetic data reported by the authors 
are at least 107 (seven orders of magnitude) larger than expected 
from our calculation. In other words, we claim that, even if it 
exists really, superconductivity is impossible to detect by such 
magnetic measurements in such single walled nanotubes. In fact, 
we believe these results as unphysical. 
 

the macroscopic radius R of the sample and sometimes of 
the order of, or less than, the London penetration depth λ
( λ = 0.1 to 1 µ m typically). This has several enormous 
experimental consequences: (1) One consequence is the 
inevitable presence of Josephson junctions (often called 
weak links in granular materials) between adjacent 
coherent grains, the manifestation of which will critically 
depend on the experimental conditions. (2) Another 
consequence (with which we are very interested here) 
concerns Meissner effect which tends to vanish as the 
grain size rg becomes smaller than the London penetration 
depth. For instance, a direct experimental implication of 
this size effect is the fact that strictly one dimensional 
(1D) superconductors are impossible to investigate and 
therefore to detect by magnetic measurements. The reason 
for this is quite simple. The magnetic moment of a 
superconductor sample always results from closed super-
current loops within the sample. However, closed loops 
are by definition impossible to produce in 1D materials. 
Another way to express this 1D property is to say that λ
is infinite for field penetration along the non-conducting 
directions of the 1D material. 
 Clearly, it is their granular nature that limits the 
technical and industrial applications of the new 
superconducting materials. Indeed, as just noted, the grain 
boundaries behave like weak links limiting the inter-
granular critical current density Jc,inter (which is equivalent 
to the transport critical current density, Jc,tr) to a few 103

A/cm2. This is a very small value as compared with the 
intra-grain critical current density Jc,intra which can be as 
high as 107A/cm2 in HTS samples. In addition, the inter-
granular current is extremely sensitive to any magnetic 
field (this is at the origin of the term “weak link”) and is 
generally suppressed by a field of a few tenths of Oe or 
less: It can be said that the Josephson second critical field 
HJ,c2 characterizing granular superconductors is typically 
four to five orders of magnitudes smaller than Hc2 of the 
bulk. What is very interesting and intriguing is that the 
situation is quite different in conventional low temperature 
superconductors (LTS) where the grain boundaries do not 
behave like weak links and thus do not play such a 
negative role for Jc,tr.

For the sake of technical applications, it may be 
interesting to ask the question why such a difference 
between conventional and new superconductors. Some 
of the reasons for this difference could be: (1) the 
physics of SNS (metallic alloys) and SIS junctions (HTS 
and probably SO materials) are quite different (Remind 
that SNS means Superconductor–Metal–Superconductor 
junction while SIS refer to Superconductor–Insulator–
Superconductor junction). (2) The grain boundaries are 
generally much cleaner and better defined in metals and 
metallic alloys than in new superconductors. (3) Perhaps 
more fundamentally, in conventional superconductors 
the thickness of the grain boundary is generally much 
smaller than the coherence length ξ .

Considering again the concept of granular 
superconductivity, we must emphasize that the effective  
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Figure 1. Microscopic field penetration in a perfect 3D type II superconductor. Left H < Hc1: an ideal superconducting material 
expels the magnetic field except near the surface in a thin shell of depth λ . In usual conditions the sample radius R is much larger 
than λ and one considers that the magnetic shielding (or Meissner effect) is perfect. Right H > Hc1: The field penetrates the sample 
in the form of quantized vortices. In an ideal 3D material the vortices form a perfect triangular lattice. 

superconducting grains do not necessarily coincide with 
the usual “metallurgical grains”, especially for OS where 
the “granular superconductivity” seems to always exist 
even in perfect single crystals (for instance, as 
determined by X ray observations at room temperatures). 
This exotic granularity is in fact induced by a kind of 
order-disorder transition at low temperature (see 
hereafter for more details on this transformation). 
 The outline of this paper is as follows: Firstly, we 
will remind the theoretical aspects of granular 
superconductivity that are of interest for the present 
study. Secondly, these theoretical predictions will be 
illustrated by some experimental results in HTC 
superconductors. Thirdly, we will then concentrate on 
the magnetic properties of the 2D κ -(BEDT-TTF)2X
organic superconductors. Contrary to the 1D Bechgaard 
salts, these are quasi-two-dimensional and 
superconducting at ambient pressure and not too low 
temperatures, 8-12K, facilitating their investigations by 
magnetic measurements. 
 Finally, we feel from the above discussion that the 
role of size effects in the interpretation of the 
experimental data is much more important in the new 
superconductors than in conventional ones. This is why 
we will devote much attention to this aspect here. 
 
2. The equilibrium magnetization, Meq, of
superconducting materials  
It is probable that magnetic measurements represent the 
most powerful experimental technique not only for 
standard characterization but also for the most 
fundamental investigations of superconducting materials. 
In addition, usual magnetic experiments are relatively 
easy and within reach of practically any solid state 
physicist. However, very often the quantitative 
interpretation of the data is another story. This is why we 
will insist here very much on these interpretations. For 
this purpose, we will first distinguish between (1) the so-
called equilibrium magnetization Meq (i.e., the 

magnetization of perfect defect-free superconducting 
materials) and (2) the so-called irreversible 
magnetization Mir induced by defects. The latter is 
related to vortex pinning and vortex creep. At this point, 
it is important to emphasize that, even when the defects 
concentration is very low (less than 1% to say), Mir is not 
necessarily a small perturbation of Meq but instead it can 
exceeds Meq by several orders of magnitudes. Another 
very important question to always bear in mind when 
interpreting the experimental data concerns the interplay 
between the macroscopic shape of “the visible sample” 
and other, possibly hidden, semi-macroscopic structures, 
such as granular effects, especially when the grain radius 
rg is comparable or smaller than λ .

2. 1 Meq of 3D superconductors of size much larger 
than λλλλ .
We have just noticed that the investigation of the 
magnetization provides important information on the 
most fundamental parameters of the superconducting 
state (namely, Jc, Hc1, Hc2, λ and ξ). Before discussing 
some behaviors more typical of layered superconductors, 
let us first recall the expressions of Meq for ideal three-
dimensional type II superconductors in the limit R→ ∞
(we remind that R is the macroscopic radius of the 
sample, generally much larger than λ while r or rg refer 
to small grains) 
 The equilibrium magnetization of such type II 
superconductors has first been calculated by Abrikosov 
[11, 12, 13, 14] who predicted the appearance of vortices 
in the mixed state defined by H > Hc1. In this mixed 
state, Meq is controlled by a repulsive vortex-vortex 
interaction that determines the number of vortices within 
the material as well as the symmetry of the vortex lattice. 
figure 1 illustrates the flux and current distributions 
(microscopic representation) in the Meissner phase 
(H < Hc1, Figure 1, left,) and in the mixed or Abrikosov's 
state (H > Hc1, Figure 1, right) in which the field 
penetrates the sample in the form of vortices. 
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Figure 2. (a) Schematic representation of the equilibrium magnetization of type II superconductors. (b) The associated magnetic 
induction B(H) (for T << Tc ). We see that B=0 for H < Hc1, traducing the Meissner effect. Keep in mind that B(H) is related to 
Meq(H) through Eqs. 1 to 5 and that the demagnetizing field is equal to zero here (N = 0). 
 

Figure 3. Macroscopic profiles of the local induction B(r) (a) and the associated reversible surface currents (b), in a cylindrical 
sample of a perfect type II material, for H < Hc1 (left side) and H ≥ Hc1 (right side). 
 

In its first version, Abrikosov’s theory considers an 
ideal isotropic material with no size effects, no surface 
barriers, and negligible thermal fluctuations in the vortex 
lattice. Bear in mind however that most of these effects 
are not negligible in real experiments and must be 
considered when analyzing the data. 
 Abrikosov's Meq(H) and the associated B(H) curves 
are presented schematically in figure 2a and figure 2b 
respectively. We see that B = 0 for H < Hc1, expressing 
the usual Meissner effect (i.e., perfect shielding) 
 To help understanding the physical meaning of the 
equilibrium magnetization, we also show in figure 3 the 
macroscopic distribution of fields (top) and currents 
within the material at equilibrium (bottom). Note that 
this distribution is the same as in figure 1 but is more 
appropriated for the analysis of macroscopic 
measurements.  
 At this point it is important to remind that the 
measured magnetization is entirely due to the surface 
current flowing around the sample, as sketched in figure 3. 
In other terms, a perfect superconductor cannot carry 

any current in its volume except near its surface in a thin 
shell of depth equal to λ . This is why a perfect 
superconductor is of no many uses for technical and 
industrial applications. 
 To understand the field and current profiles sketched 
in figure 3 we must remind that H and B are related to 
Meq by Gauss equation B – H = 4πMeq(H,T) and to the 
total current I by Ampere’s theorem, assuming that the 
sample is a very long cylinder of length L with zero 
demagnetizing field, so that the effective field is equal to 
H outside the sample, and to B inside it. Then, Ampere’s 
theorem gives B – H = I/L = 4πMeq.

Now we come back to figure 2-3 and write the 
theoretical Meq(H) as calculated by Abrikosov in the so-
called London approximation [11-14]. The theoretical 
Meq(H) curve has an infinite slope at H = Hc1 (Figure 2) 
while it varies extremely slowly (logarithmically) with H
for H >> Hc1. Neglecting again demagnetizing effects we 
have: 

Meq (H,T) = –
π4

H (H < Hc1 ) ,      (1) 
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Here ξλκ /= while β is a parameter of the order of (or 
slightly greater than) unity.  
 We have already noted that more general theories 
[15,16] show that at fields lower than the 
thermodynamic field these expressions can be notably 
modified by surface barriers. Other theoretical 
treatments by Z. Hao et al. [17, 18] account more 
rigorously for vortex core effects, particularly near the 
critical field Hc2. For instance, the contribution of the 
currents circulating very close to the vortex cores 
transforms eqs. 3 and 4 into: 
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Here α(H,T) and ),( THβ are fitting parameters (close 
to unity) that slowly vary with field and temperature 
(approximate values valid in restricted field domains are 
given in Ref. [18]). 
 
2. 2 Influence of the demagnetizing factor N on Meq 
We know that the experimental magnetization depends on 
the external shape of the sample through the usual 
demagnetizing factor N and through the field penetration  
depth. The influence of ordinary demagnetizing field is 
illustrated in figure 4, for various values of N
(corresponding to a well defined elliptical shape) and for a 
more realistic case (inset) with a distribution of N such 
that <N> = 0.6 (average value) and ∆N = 0.1. The dashed 
curve of the inset corresponds to N = 0.6 and ∆N = 0. One 
sees that any distribution in N suppresses the anomaly in 
Meq at H = Hc1. One also sees how the demagnetizing 
effects increase the effective field seen by the sample and 
displace the apparent Hc1 towards lower values. 
 
2. 3 Influence of the effective size of the sample on 
Meq through the /λ r ratio 
We have seen that in the usual London model the 
equilibrium magnetization is produced by surface-like 
currents circulating around the sample within the 
London penetration depth λ . This implies that the above 
eqs. 1 to 6 giving Meq cease to be valid when the size of 
the effective sample – or the scale of the defect 
structure – becomes comparable with or smaller than λ .
At this point we note that λ diverges at Tc, making the 
condition R>λ always true close enough to the 

 

Figure 4. Equilibrium magnetization as a function of H for 
five different demagnetizing factors indicated in the figure. 
Note the logarithmic anomaly at H=Hc1. Inset: The continuous 
curve represents Meq for a more realistic example characterized 
by a normal distribution of N such that N = 0.6 (average value) 
and ∆N = 0.1. The dashed curve of the inset also corresponds to 
N = 0.6 but with ∆N = 0. 
 
superconducting transition. 
 The influence of the factor R/λ on Meq has been 
first calculated by London for a spherical specimen [1] 
and then by Clem for a cylindrical shape with H parallel 
to the cylinder axis [19] and for H < Hc1 (see also 
Senoussi [20] and eqs. 5-7, pages 38-39 of Ref. [21]). 
eqs. 7-9 below are the results of such calculations. These 
equations can be applied to the individual grains of 
granular materials if Josephson and dipolar couplings are 
both negligible.  
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Here I1 (x) and Io(x) are the modified Bessel functions of 
the first kind, of order one and zero respectively. H is 
parallel to the surfaces of the slab (eq. 8) and to the 
cylinder axis in eq. 9. It is perpendicular to the cylinder 
axis for eq. 10. For the sake of simplicity we will also 
assume that the temperature dependence of λ obeys the 
phenomenological two-fluid model:  
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Figure 5. Calculated magnetic susceptibility (eq. 13) as a 
function of the ratio r/λ for a spherical sample (sp) and for 
H < Hc1 (the first critical field). 
 
In figure 5 we show the calculated magnetic susceptibility 
χ sp = Meq/H (based on eq. 7) as a function of the ratio 

λ/r in log–log scales for a spherical grain. We clearly 
see that χ sp starts to fall off abruptly for λ<r .

In figure 6 we compare the calculated χ for three 
different geometries: spherical (eq. 7), cylindrical with H
either parallel (Hparal) or perpendicular (Hper) to the 
cylinder axis (eqs. 8 and 10, respectively) as a function 
of the same λ/r ratio. We see in figure 6 that the 
evolution of χ with λ/r does not depend very much 
on the exact geometry of the grain. This means that the 
interpretation of the experimental results does not 
depend rigorously on the exact shape of the grains. 
 In figure 7 we plot the magnetic susceptibility of a 
spherical sample, (eq. 7) as a function of temperature for 
various λ/r (0) ratios indicated on the figure. Here, λ is 
assumed to vary following the classical phenomenological 
two-fluid model (eq. 11). Note also that, to facilitate the 
comparison with experimental results, we take Tc
approximately equal to that of the organic superconductor 
that will be investigated later. 
 Figure 7 assumes that, (1) the spherical grain is 
perfect (i.e., the grain has a perfect crystalline form) and 
(2) the condition H ≤ Hc1 is always realized. Of course, 
both conditions are only valid in certain experimental 
conditions that have to be clarified now: (1) Since 
Hc1(T)→0 when T →Tc, this means that  as T approaches 
Tc there is necessarily a crossover temperature Tcr at 
which H = Hc1(Tcr).

Using the temperature dependence of Hc1(T) (see 
eqs. 4 and 11) and equating H to Hc1(T) we find (remind 
that N is the demagnetizing factor) : 
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Above this temperature the variation of the measured 
magnetic susceptibility ceases to be independent of the 
applied field and becomes in fact very complicated as a 

Figure 6. Compares the magnetic susceptibility (H < Hc1) as a 
function of the ratio r/λ of a spherical sample and a cylindrical 
sample with H // (Hpara) and H⊥ (Hper) to the cylinder axis, 
respectively.  
 
function of this field. More precisely: χ = Meq /H is 
now governed by equations of the form given in eqs. 2-6 
instead of Eq. 1. Nevertheless, in many ac susceptibility 
experiments one has H << Hc1(0), then Tcr is very close 
to Tc and can be ignored. 
 
3. The irreversible magnetization of 
superconducting materials 
In real materials there are intra-grain imperfections (not 
accounted for in any of the above descriptions) that pin 
the vortex lines, whether Josephson or Abrikosov's 
vortices. This adds a non-equilibrium term, Mir, to the 
measured magnetic signal. Contrary to Meq which is 
induced by surface currents (flowing in the London 
penetration depth) Mir is induced by currents circulating 
inside the volume of the specimen. It is such currents in 
the volume that define the critical current density. For 
the sake of simplicity one usually considers that the 
critical current density is homogeneous through the 
specimen ,and only depends on the local magnetic field. 
However, we remind that the main object of the present 
paper is to show that this is not justified in the presence 
of very extended defects as in the case of sintered HTS, 
organic superconductors, nanotubes, etc. Let us first 
remind Bean’s model, which ignores such extended 
inhomogeneities. 
 
3. 1 The Bean’s critical state 
To relate the irreversible magnetization to the field and 
current profiles inside the specimen, Bean [22] assumed 
that the critical current density can only take one value 
among three different states Jc, -Jc or zero, depending on 
the electromagnetic history of the sample. Moreover, 
Bean’s model neglects time effects (especially flux creep) 
in the magnetization (except possibly those imposed by 
Maxwell equations during variations of the external 
fields). The hysteresis cycle together with the field and 
current profiles determined from this model are illustrated 
in figure 8 (see figure caption for more details). 
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Figure 7. Plot of the magnetic susceptibility of a ideal spherical 
sample as a function of temperature for the indicated λ/r ratios 
(see eqs. 13 and 17). The data are based on the two-fluid model 
and are valid in the limit H→ 0 or as long as H ≤ Hc1.

Bean’s model is particularly useful for H > Hp, where Hp
is the field limit above which the sample is entirely 
penetrated by magnetic flux, i.e., down to its core. Under 
the above conditions the critical current density is related 
to the hysteresis cycle by the eqs. 13-16 below. Note that 
in these equations R is in cm, Jc in A/cm2 and M in 
emu/cm3 (“practical units of Bean” obtained from CGS 
units by replacing c, the velocity of light, by 10), valid 
for a fully penetrated cylindrical sample with H
perpendicular to the basal plane one has: 

Jc = 15 
R

MM −+ − = 30 
R

M ir , (13) 

Here M+ and M- refer to the upper and lower branches of 
the hysteresis cycle, respectively. For a rectangular or 
ellipsoidal sample with dimensions a and b in the basal 
plane (a > b and H perpendicular to this plane), the Bean 
equation takes the form: 

Jc = 30 
b

M ir  
ab /3

2
−

. (14) 

Usually, one also uses the hysteresis cycle to define Mrev 
and Mir as follows: 

Mrev = 
2

−+ + MM , (15) 

Mir = 2

−+ − MM . (16) 

The determination of the hysteresis cycle, particularly 
the associated eq. 15, is straightforward. We indeed 
remind that the measured magnetization is the sum of all 
the magnetic dipoles S(r)dI induced by all the 
elementary current loops within the sample (dI is the 
elementary current while S is the area of the loop). In 
other words the magnetization by unit volume 

∑= S(r) dI/V M ir  (SI units) where V = πLR2 is the 
volume of the sample. Here dI = JcLdr is the elementary 
current of the loop of area S = πr2. Let H < Hp = JcR and 
r* = R(1-h) (see Figure 8 for the r*(H) relationship). 
Then we can rewrite:  

Figure 8. (a) Schematic definition of the various branches of 
the hysteresis cycle (based on the Bean model) of a hard type II 
superconductor. OO* is the “virgin” or “initial” magnetization. 
A’B and B’A define the “cyclic critical” state whereas BB’ and 
AA’ refer to “reversal” states. Also shown is the field Hp at 
which magnetic flux just reaches the center of the specimen 
(assumed to be cylindrical). The lower figures represent the 
field and current profiles associated with the various branches 
of the cycle, in particular the virgin magnetization Mvg 
(H < Hp). As in the usual Bean model Meq is taken equal to zero 
(but see Senoussi et al. [20, 23]) and Jc is assumed to be 
independent of both H and r, except via the magnetic history. 
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We remind that the above figure 8 and the associated 
formulae 15-18 of the Bean model assume a 
homogeneous (coherent) cylindrical sample in which the  
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Figure 9. This graph displays the magnetic susceptibility of a 
sintered YBCO as a function of temperature at different fixed 
fields. The grains size is of order 10 µ m. One clearly see the 
coherent limit and the incoherent-granular limits defined by 
two envelops. The steps correspond to the passage from the 
coherent to the incoherent behavior. 
 
critical current density does not depend explicitly either 
on r or on H. The Bean model is very useful to 
investigate the critical current density and other physics 
of the vortex lattice. Unfortunately, very often this model 
cannot be applied in its usual form just described. It is 
the experimentalist's job to determine when this Bean 
model can be applied and when a more elaborated 
granular description is more appropriated. In the 
following paragraphs we will present examples of such 
granular situations. 
 
4. Experimental results in HTS ceramics 
In real experiments the crystalline structure is generally 
very inhomogeneous and the hysteresis cycle as well as 
the superconducting transition crucially depends on such 
a defect structure. This influence is generally extremely 
complicated however, to facilitate the interpretation, it 
can be classified into the following two limiting cases.  
 On the one hand, small defects of size comparable to 
ξ or less embedded in a perfect superconducting 
medium generally improve the superconducting 
transition, (i.e., make it more abrupt at least below the 
so-called irreversibility line). A further and more 
fundamental benefit of small defects is that they are very 
efficient to pin vortices and therefore to improve the 
critical current density, especially in as prepared 
materials. 
 On the other hand, extended-connected defects can 
behave like weak links (or Josephson junctions) and 
generally broaden the superconducting transition. They 
also considerably degrade the effective (or transport) 
critical current density, since this current will be limited 
by the weak links. Of course, we are here more 
interested in the latter case since grain boundaries can be 
considered as connected defects. 
 In figures 9-11 we present the experimental 

 

Figure 10. Low field hysteresis cycles for 4 different grain 
sizes (1 to 10 µ m). These tiny cycles are typical of ceramic 
HTS and are signatures of Josephson junctions. The initial 
slopes are roughly the same for the four samples, but after the 
suppression of the junctions by the applied field, the slope then 
decreases with r.

magnetization of sintered superconducting YBa2Cu3O7
as a function of the ceramic grain radius. The question is 
then under which experimental conditions can we apply 
the above granular analysis (Figure 5-8 and associated 
eqs. 13-27) to real macroscopic though granular 
samples? In real conditions the grains can be coupled 
together, especially at very low H and very low T,
through two different interaction mechanisms. The first 
one is the very common dipolar interaction that is at the 
origin of demagnetizing effects exemplified by the 
curves in figure 4. Since dipolar interaction is of long 
range it always exists. Fortunately, as it is of long range 
it can simply be described (to a first approximation) by 
the macroscopic demagnetizing factor N of the 
macroscopic sample, thus ignoring the internal granular 
structure [23]. The second interaction with which we are 
more concerned here is the Josephson coupling between 
adjacent grains. As it is well known, Josephson coupling 
is extremely sensitive to both field H and temperature T,
as well as to the thickness d of the junction. This is why, 
up to now, Josephson junctions considerably limit the 
industrial applications of HTS materials. This coupling-
decoupling effect is well illustrated in figure 9-11 below 
which we analyze now. 
 
4.1 Manifestation of granularity as well as Josephson 
junctions in the magnetic susceptibility of sintered 
YBa2Cu3O7.
Figure 9 shows the magnetic susceptibility as a function 
of temperature at various fixed fields (varying from 0.2 
to 20 Oe) for a very compact sintered YBa2Cu3O7
granular samples. Clearly, the curves do not resemble 
any of those displayed in figure 7. 
 We indeed clearly see two limiting envelops. One 
(dashed curve) corresponds to the limit H→0. This 
envelop defines in fact the coherent behavior where all  
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Figure 11. Examples of magnetization loops of sintered 
granular superconductors at increasing field scales (a, b, c, d) 

extending from H < w
c1H to H > Hir. Here w

c1H and Hir are the 
weak link (or Josephson) first critical field and the irreversibility 
field, respectively (e) Schematic variation of M in the depinning 
line region. This example is typical of the ceramic YBa2Cu3O7.
At very low H, M is linear, reversible, and exhibits perfect 
screening if R >> λwl (the Josephson penetration depth in the 
weak links). As we will discuss it later this behavior should be 
common for organic superconductors, however it should be very 
difficult to observe here, because the Josephson fields and 
currents as well as the transition temperature are much lower 
and, more fundamentally, much more distributed in these 
materials. 
 
the grains are coupled together via Josephson 
mechanism, so that the sample appears like a single 
superconducting grain. In other words, in this limit all of 
the junctions are on. The other envelop (upper solid 
curve) defines the incoherent behavior above which all 
the grains are fully decoupled (off). It is this envelop that 
gives information on the size of the superconducting 
grains as compared to λ . The steps between the two 
envelops represent the gradual destruction of the 
Josephson junctions by temperature for the indicated 
fixed applied field. The width of the steps measures the 
statistical distribution of the junction thickness (even 

though a large contribution to this broadening arises 
from the pinning of Josephson vortices) 
 
4. 2 Manifestation of granularity and Josephson 
junctions in the hysteresis cycle of sintered YBa2Cu3O7.
Figure 10 shows the low-field hysteresis cycles (T=4.2 K 
and H<250 Oe ≈ Hc1(0)) for four sintered –granular 
YBCO samples of the same macroscopic shape but 
differing by the average grain sizes : rg ≈ 1, 3.5, 5 and 10 
µ m. Since the applied field is smaller than the bulk first 
critical field, the tiny hysteresis cycle cannot be ascribed 
to Abrikosov's vortices but is necessarily due to the 
pinning of Josephson vortices by junction imperfections. 
Examining figure 10 we note that: 
• The initial slope is the same for the four samples. 

Since by definition the initial slope is the magnetic 
susceptibility χ i, this result is consistent with our 
previous interpretation of figure 9 that as H→0 all the 
grains are coupled together, and the magnetic response 
is imposed by the macroscopic shape of the material 
alone (coherent limit). 

• The final slope χ f varies approximately like 1/rg.
Again this is consistent with our granular analysis (see 
eq. 10 for example) and the interpretation of the upper 
envelop of figure 9.  

• Here too, the steps indicate the gradual suppression of 
the Josephson junctions, by the magnetic field (instead 
of temperature as in figure 9). 

• The area of the cycle is proportional to the number of 
Josephson junctions  

• The width of the cycle ( ∆ M = M+-M- = 2Mir) is 
proportional to the transport critical current density but 
in a more subtle way than predicted in Bean’s model. 
More precisely, Jtr and ∆ M are now approximately 
related by Jtr = [15 ∆ M/rg] × [ χ i /Md χ i -M χ f)]: There is 
an additional factor χ i /Md χ i -M χ f) that corrects for the 
fact that the width of the cycle is proportional to the 
number of junctions crossed by the current loops (in 
the coherent state) while the critical current is a single 
junction propertiy. 

• Like in figure 9, the width of the steps gives information 
on the thickness statistical distribution of the junctions. 

 
4. 3 The transition from Josephson's low field hysteresis 
cycle to Abrikosov's high field hysteresis cycle 
So far we have limited our experimental results to the 
case H << Hc1 where the magnetic signal is imposed by 
London surface currents and/or by Josephson currents 
exclusively. Now we wish to extend our discussion to 
the case H > Hc1 when the field start to penetrate into the 
grains in the form of Abrikosov's vortices. As already 
noticed, these Abrikosov vortices can be pinned by small 
defects giving rise to a irreversible magnetization as well 
as increased critical current density. This is illustrated in 
figure 11 that shows the hysteresis cycle of a sintered 
granular YBCO at different field scales, extending from 
H << Hc1 to H >> Hc1 [24]. 
 Like in figure 10 above we observe (figure 11a,b,c) 



92 S Senoussi and F Pesty  IJPR Vol. 6, No.3  

the appearance of a low-field irreversibility regime at 
H << Hc1 (It is to be emphasized that this low field 
regime does not exist in single crystal materials). What is 
also very interesting here is the appearance of a high 
field irreversibility regime (figure 11d,e) which is well 
separated from the low field one. This implies that the 
statistical distribution in the physical properties of the 
Josephson junctions (which are at the origin of the tiny 
cycle) is very narrow. The same kind of behavior is 
observed in all other HTS materials. This is not true for 
organic superconductors, which we wish to examine 
now. 
 
5. Experimental results in organic superconductors: 
Topological spin glass-like clustering 
It is known [25-34] that the organic conductor  
κ -(BEDT-TTF)2Cu[N(CN)2]Br, – where BEDT-TTF is 
the bis (ethylenedithio) tetra-thiafulvalenium molecule 
while Cu[N(CN)2]Br is a monovalent anion – undergoes 
a structural transition (also called “glassy transition”) at 
a certain temperature (Tg = 70–80 K) and becomes 
superconductor below about 12 K. Moreover, in some 
circumstances this material exhibits a magnetic transition 
around 10–20 K preceded by the onset of magnetic 
fluctuations at about 50 K [35, 36]. 
 Typically, Tg is about one order of magnitude higher 
than the superconducting transition Tc. For the present 
example of κ -(BEDT-TTF)2Cu[N(CN)2]Br, Tc is about 
11.6 K while Tg is order 80 K for the hydrogenated 
compound. It is also well known that organic 
superconductors generally present strong deviations 
from perfect shielding (i.e., -4π (1-N) χ <<1), correlated 
with incomplete “annealing” of the sample upon cooling 
through the order–disorder transition. 
 In most cases these deviations have been interpreted 
as a direct measure of the so-called fractional 
superconducting volume vs, neglecting any possible 
granular effects. The present authors [37] were the first 
to show that this classical interpretation is generally 
wrong and that organic superconductors exhibit a 
granular-like behavior with χ strongly controlled by the 
factor r/ λ . Of course, the exact granular structure and 
the associated Josephson network would depend 
somehow on the microscopic nature of the order-
disorder transition itself. Our idea was the following: by 
analogy with other phase transitions, it is expected that 
when the sample is cooled through this transition the 
ordered state would nucleate simultaneously at many 
different points of the material. 
 Firstly, this would lead to a multi-domain structure in 
which the individual domains grow up with the 
annealing time (or as the inverse of the cooling rate) near 
the transformation temperature Tg (here, 80 K).  
 Secondly, it is expected that these annealing times 
control the size of both the superconducting domains (as 
well as the strength of the Josephson coupling between 
them) and the junction network. 
 Thirdly, the exact spatial structure (or the topology) 

of the domains and the associated Josephson junctions 
network would reflect the exact nature of the transition. 
Fourthly, this topology could be inferred from 
macroscopic measurements (transport and magnetic) in 
the superconducting state. Before considering our 
experimental data, let us first remind some of the known 
properties of the 80 K transformation. 
 
5. 1 The molecular origin of the 80 K transformation 
in κ -(BEDT-TTF)2Cu[N(CN)2]Br 
Let us now remind some known properties of the order-
disorder transition (hereafter called the 80 K anomaly) in 
κ -(BEDT-TTF)2Cu[N(CN)2]Br. At first, we note that 
there is a consensus among organic superconductor 
specialists (see Tanatar et al. [26 , 27] and references 
therein) that this transformation is associated with a 
gradual ordering-freezing of the ethylene groups at the 
ends of the BEDT-TTF molecules. More precisely, at 
higher temperature the ethylene groups rapidly oscillate 
between two different conformations. Upon cooling, 
these thermal fluctuations gradually slow down. 
Simultaneously, a kind of long-range order among the 
ethylene groups builds up by choosing one from the two 
conformations (so-called: “staggered” or “eclipsed”). 
 However, we emphasize that the low-temperature 
state contains some amount of quenched disorder that 
strongly depends on the anion species (Cu[N(CN)2]Br-

here), the applied pressure, the cooling conditions and, 
more importantly, on whether the ethylene groups are 
formed by hydrogen bonds (denoted H8-Br) or 
deuterium bonds (denoted D8-Br). This is why the exact 
nature of the 80 K anomaly and the associated low-
temperature superconducting state are still not 
understood. For instance, D8-Br exhibits several 
puzzling superconducting properties. Some of these 
properties were ascribed to the appearance of a magnetic 
transition at low temperature (10-20 K), the meaning of 
which is unclear. Several mechanisms have been 
proposed including spin-density waves, [38] spin 
canting, [36] or the suppression of superconductivity by 
dispersed magnetic ions associated with the persistent 
disorder [39]. Also, some authors [31, 32, 40] ascribed 
the decrease of the apparent superconducting volume to 
an increase in λ (the in-plane penetration depth) 
through mean-free-path effect. [31]. However none of 
these mechanisms is able to explain, even qualitatively, 
the experimental data reported below: 
 1) The fact that the apparent magnetic current density 
jc always decreases (instead of increasing if one accepts 
the usual models) as the degree of quenched disorder 
increases. 2) The low-field susceptibility also decreases 
in the same experimental conditions. For instance, if one 
accepts such interpretations one is led to assume that λ
can reach unphysical values, as high as 0.1 mm [32] (and 
much more if applied to our present results). 3) Despite 
these large changes in the apparent jc and the apparent λ ,
Tc stays almost constant. 4) As the quenched disorder is 
increased one observes several unusual phenomena: 
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firstly, the appearance of increasing irreversibilities at H
<< Hc1 (remind that for coherent superconductors we 
expect no hysteresis below Hc1), secondly, a large 
broadening of the superconducting transition. Instead, 
the experimental data and the theoretical analysis we 
present below prove that all of these features can 
naturally be explained in the framework of a granular 
model and the associated weak links connecting the 
grains. In addition the spatial structure of the grains is 
similar to that of spin clusters in an Ising spin glass. 
 
5. 2 Experimental data and analysis 
We have investigated the ac magnetic susceptibility and 
the dc magnetization of the superconducting phase after 
performing a series of thermal treatments on a D8-Br 
single-crystal of dimension ~ 1 × 1 × 0.25 mm3. To this 
end, we annealed the sample inside the SQUID cryostat at 
different fixed temperatures Ta ranging from 65 to 110 K. 
Moreover, in order to carefully monitor the development 
of ethylene ordering as a function of time at a given Ta, we 
varied the cumulated annealing time ta from about 30 
seconds at 100 K to about 2 × 106 sec at 65 K. At each Ta
the cumulated time ta was divided into a sequence of 
intervals (say wt∆ ) ranging from about 20 seconds at 
95 K to 12 hours at 65 K. At the end of each interval wt∆
the sample was rapidly cooled (20 K/min) to 2K. The ac 
susceptibility )(Tχ (ac field h = 3 Oe) and the magnetic 
hysteresis cycle Mi(H) (0 < H < 1000 Oe, typically) were 
subsequently measured between 2 and 15 K using a 
Quantum Design SQUID. Then, the sample was again 
rapidly warmed up (10 K/min) to the same Ta, after which 
the same annealing-cooling-measuring procedure was 
repeated. Note that the fastest cooling rate was limited by 
the cooling power of the SQUID and yielded a systematic 
error in the origin of the annealing time. However, we 
found this to be negligible below about 85 K. 
 As inferred from the data below, we find that the 
only way to explain the experimental results is the 
cluster-like description. 
 Figure 12 shows both the in-phase ( πχ4 , lower 
plots) and the normalized out-of-phase ( "χ , upper plots) 
ac susceptibilities as functions of temperature (2-15 K) 
for ta ranging from about 0 to 7260 minutes and for 
Ta = 69 K. Taking into account the demagnetizing factor 
for our parallelepiped geometry, N ≈ 0.65 [41] we find 

( ) 84.014 ≈−− Nπχ  for the longest annealing time. 
Diamagnetic shielding is still below its maximum 
possible value, defined by ( ) 114 =−− Nπχ . However, 
the missing 16% are accounted for by the fact that the 
ratio λ/r is not infinite. Indeed, an exact calculation for 
spherical particles with a ratio λ/r of about 20 fully 
explains the difference. 
 Considering again the χ curves we observe a large 
broadening of the superconducting transition, especially 
for the most rapidly cooled cases. In addition, as 
illustrated by the imaginary susceptibility "χ (upper 

panel), this broadening is accompanied by significant 
magnetic losses (remind that "χ is proportional to such 
losses), particularly for short annealing times. Then, since 
for homogeneous systems we expect negligible hysteresis 
for measuring fields smaller than the first critical field 
Hc1 ≈ 20 Oe, [42] the most plausible explanation for such 
hysteresis effects would be the presence of weak links 
between adjacent clusters, with a large distribution of the 
associated Josephson critical fields [20] The observed 
broadening is not necessarily due to inhomogeneities in 
the temperature transition Tc but can principally be 
explained by the following mechanisms inherent to any 
cluster model. Firstly, it is known that when ( ) rT >>λ ,

χ varies as ( )2/ rλ [20, 43]. Then, since r is widely 
distributed and tends to zero with very short annealing 
time, this yields a natural broadening that can be defined 
by the condition ( ) rT >λ . A second source of broadening 
is connected with the distribution and the temperature 
dependence of the Josephson critical fields [20, 44], which 
is expected to be very large for spin-glass-like clustering. 
Thirdly, we also expect strong variations in Tc when r
becomes comparable with the bulk coherence length ξ .
However, for strong type II superconductors as it is the 
case here ( 140/ >= ξλκ , µm7.0≈λ , Ref. [42]), isolated 
clusters of such sizes are hard to detect in standard 
magnetic measurements. 
 Figure 13 displays Mi vs. H curves obtained at 2 K 
after following the same annealing procedures as in 
figure 12 (Mp denotes the magnetization at the peak of a 
cycle.) Here too, we observe a gradual improvement in 
Mi with ta. In addition, from the H-dependence of the Mi
curves, we deduce that the pinning strength also 
increases with ta. The inset to figure 13 is an expansion 
of the low-H cycle for two representative annealing 
times: ta ≈ 5 and 1800 minutes (note the difference of 
about 18 in vertical scales). Obviously, the low-H
behavior of the most annealed state (filled symbols) is 
perfectly reversible (to within the experimental limit) 
and linear, while that of the quenched state (open 
symbols) exhibits strong irreversibilities even at H as 
low as 1 Oe. For the same physical reasons as for χ , the 
presence of hysteresis reflects the increasing role of 
weak links at short annealing times. The increase in the 
pinning energy with ta can also be explained by the 
gradual reduction of the number of such weak links with 
increasing ta. Finally, all these results confirm that the 
superconducting clusters and the non superconducting 
ones are highly entangled.  
 We now present in figure 14 the ac susceptibility χ
together with the peak magnetization Mp as functions of 
the annealing time at 72, 69 and 65 K. Let us first focus 
on the 69 and 72 curves from which we draw the 
following four properties. 1) The relaxation is more 
rapid for χ than for Mp. 2) Both χ and Mp tend toward 
saturation. From now on we shall call these saturation 
limits Ms and sχ . 3) sχ is nearly the same for 72 and  
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Figure 12. In-phase ( χ , lower part) and out-of-phase ( "χ in 
relative units, upper part) ac susceptibilities of deuteratedκ -
(BEDT-TTF)2Cu[N(CN)2]Br vs. temperature (h = 3 Oe), 
plotted after annealing then quenching (from Ta = 69 K) as 
described by the labels in the figure. For the sake of clarity, 
only half of the registered curves is displayed. The solid lines 
are guides to the eyes.  
 
69 K while Ms changes by a factor of almost two. 4) 
More fundamentally, these saturation values are found to 
be reproducible and independent of the previous thermal 
history (see inset to figure 14). This suggests that they 
correspond to an equilibrium thermodynamic state. 
 The examination of the 69 K curves reveals that both 
χ and Mp follow two consecutive regimes as functions 
of ta. Firstly, an initial time regime, described by a power 
law. Such a regime is preponderant below 66 K, but 
becomes practically inaccessible above Ta = 72 K 
(because of the finite cooling-heating rates). It is 
spectacularly illustrated by the 65 K curves, which also 
reveal a considerable slowing down of the relaxation 
rates below about 69 K. Secondly, a long time regime 
described by a stretched exponential law 

( )( )( )βτ/exp1 t−−∝ (represented by solid lines on 
the Mp curves). It corresponds to the saturation limit just 
discussed. This regime is dominant above 72 K but out 
of reach experimentally below 63-64 K (as it needs a ta
of several years). 
 Such a two-regime behavior is common in many 
fields of physics and is known as “growth and 
coalescence”. In spin glasses the short time regime is 
associated with a “fine-grained structure” while the long 
time one, called α regime, defines the single 
exponential and the stretched exponential regimes [45, 
46, 47]. Considering the long time regime, we find 1≈β
for T ≥ 69 K and 1.05.0 ±≈β at 66 K (note that the 
fitting functions are shown as solid lines for Mp and 
dashed lines for χ ). 
 Figure 15 shows the variation against Ta of both Ms

and sχ , calculated by extrapolating the fitting curves as  

 

0 200 400 600 800 1000

-12

-8

-4

0

Ta = 69 K

M p

M
i
(e

m
u

cm
-3
)

H (Oe)

-10 -5 0 5 10
-0.2

-0.1

0.0

0.1

M
i
(e

m
u

cm
-3
)

H (Oe) -4

-2

0

2

4
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same heat treatment (and same symbols) as in figure 12. The 
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Figure 14. Peak magnetization Mp (filled symbols, right 
scale) and susceptibility χ (open symbols, left scale) at 2 K 
vs. annealing time at Ta = 65 (triangles), 69 (squares) and 72 K 
(circles). Note that above 69 K both quantities tend to saturate 
but more rapidly for χ . The inset shows that the relaxed state 
does not depend on whether this state is reached from below or 
above its saturation value. The solid lines represent fitting 
curves (see text). The asymptotic values deduced from fitting 
are called Ms and sχ .

explained before. We see again that the two quantities 
vary quite differently with decreasing Ta: below 70 K, 

sχ tends toward a plateau whereas Ms increases more 
and more rapidly. This reflects an anomalous increase in 
the cluster size as Ta decreases and confirms further the 
cluster description. Indeed, the length scales are very 
different for the two quantities: sχ is expected to  
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function (solid line) is a stretched exponential with 1≈β for 
Ta > 69 K and 1.05.0 ±≈β at 66 K (see text). 
 
saturate for µmr 7.0≈>>λ while Ms would continue 
increasing up to µmRr 500≈≈ (Bean’s model, see 
below). Moreover, we are able to fit Ms with a scaling 
law of the form ( ) n

gs TTMM −−= 1/0 (continuous line 

in figure 15) with Tg ≈ 55 K, n ≈ 3.2 and M0 ≈ 0.16 emu 
cm-3. The inset shows the long time relaxation τ
(associated with Mi) as a function of Ta in a semi-
logarithmic scale. The data fit remarkably well with an 
Arrhenius function ( ) ( )TUT /exp0ττ = with an 
activation energy U of about 2660 K and an attempt 
frequency 0/1 τ of about 2 × 1013 s-1. Our U value is in 
excellent agreement with NMR data [35, 36] at 200-
350 K and to a lesser extent with resistivity 
measurements [28]. However, our results differ 
qualitatively and quantitatively from other transport data 
[26]. Combining the NMR frequencies reported in Refs. 
[35, 36] and our time scale shows that the ( )TU /exp  
law is obeyed over 15 orders of magnitude. By contrast 
our attempt frequency is two orders of magnitudes 
smaller than that deduced from NMR. However, we have 
experimental evidence that this difference is a mere 
isotopic effect. In most publications on the subject, the 
interpretation of susceptibility measurements were based 
on the classical Meissner formula: 4π (1-N) χ = (vs/vech)
for T→0. Remind that vs is the superconducting volume 
while vech = vs + vn is the total volume of the sample with 
vn being the normal (or possibly insulating) volume. In 
the same way, usually, the irreversible magnetization Mi
and the associated Jc are assumed to be related by Bean’s 

model 30/csi JRvM ××= , where R is the 
macroscopic radius of the sample. These formulae 
implicitly neglect any granular and any weak link 
effects. 
 As a matter of fact, if one tries to interpret our data in 
such a picture, one is led to unphysical values for both 
λ and Jc (i.e., λ could be as high as 1 cm and Jc as low 
as 100 A/cm2). In addition, such a model can explain 
neither the low-H irreversibility nor the transition 
broadening. Actually, our data are consistent with a 
granular interpretation where the macroscopic radius R
must be substituted by some average cluster radius r.
Moreover, the topology of the clusters can be described 
by a percolation model [45] and/or a Ising spin-glass-like 
model [46] according to which the cluster size grows as 

( )( )( )βτ/exp12 tCr −−≈ . Here τ and β depend on 

the dimensionality of the material and on the treatment 
temperature. The model predicts that as T is lowered, β
would vary from ≤ 1 at T ≥ Tp to 1/3 at T << Tp
(stretched exponential) where Tp > Tg is the percolation 
threshold temperature. Our data are consistent with 

1≈β at T ≥ 69 K and 1.05.0 ±=β at 66 K. In fact, we 
observe a dramatic slowing down of τ for T ≤ 66 K 
suggesting that Tp is close to this temperature. Moreover, 
as predicted by the spin glass model [46, 47] we observe 
that this slowing down is accompanied by the onset of a 
two relaxation regime. Accepting again the analogy with 
spin glasses, our data suggest the presence of two critical 
points Tp and Tg, corresponding to a percolation 
threshold and to a true thermodynamic transition [48], 
respectively. At this point, it is worth noting that the 
deduced Tg, of about 55 K, lies in the temperature range 
where ferromagnetic fluctuations take place, while the 
resistivity behavior changes from semi-conducting to 
metallic. Using a granular analysis [20, 43, 44], we find 
that at equilibrium r varies from about 0.1 µm at 
Ta ≈ 100 K to 10–30 µm at 66 K. 
 Finally, the present results prove clearly that the 
superconducting properties are determined by the 
quenched disorder created while crossing the glass 
transition and not by a possible onset of magnetic effects 
below this transition. The analogy with spin-glasses is 
straightforward: like Ising spins, ethylene molecules 
have only two allowed states. In addition, the canonical 
RKKW interactions can be simulated by a random 
distribution of incommensurate CDWs [49, 50]. 
Nevertheless, more theoretical developments are needed 
to better describe the glassy transition. 
 Another remarkable work on temporal processes in the 
resistivity of a high purity κ -(BEDT-TTF)2Cu[N(CN)2]Br 
single crystal can be found in Ref. [28]. See also Refs. 
[25, 26, 27] for other resistivity data. 
 
6. Conclusion 
In this paper we concentrated on granular 
superconductivity and its manifestation in experimental 
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results. We have seen that in most examples of the 
literature the reduction of the diamagnetic signal often 
observed in new superconductors has generally been 
ascribed to a diminution of the superconducting volume 
fraction that would be equal to the deviation from perfect 
shielding. Following the analysis outlined above, we 
suggest this is generally incorrect unless there are 
evidences that the fractional superconducting volume is 
imposed by very large (larger than λ ) and unconnected 
defects. 
 We have indeed seen that for a multi-domain – or 
granular – structure, in which the grain boundaries are 
multi-connected, the shielding factor strongly decreases 
with the ratio λ/r, even when the thickness d of the 
junctions is very small, i.e., even when the true 
superconducting volume vs is close to one. The 
superconducting transition near Tc has also been 
measured by a number of authors, some of them having 
found a substantial broadening of the transition and thus 
strong deviations from the London approximation. In 
many cases these deviations have been ascribed to 
thermal fluctuations. This is very convincing for some 
very good samples but, as discussed above, it is also 
possible that some of these deviations – especially at 
fields smaller than Hc1(0) – come from structural 
inhomogeneities in the material, for instance those 
induced by the order–disorder transition in organic 
conductors.

Concerning the critical current density, the situation 
becomes to be clarified since the distinction between 
intra- and inter-grain current densities is now quite well 
understood, at least for very low T and H (The situation 
is still very complicated and interesting near Tc). 
 Concerning organic superconductors the results of 
the literature considerably vary from one author to 
another and the granular aspects are not yet accepted by 
many specialists in this field. As discussed above we 
believe that the main cause of such confusions is again 
the 80-K transformation and the associated domain-like 
structure. As already discussed, the latter introduces an 
effective domain radius in Bean’s model, which can be 

much smaller than the macroscopic radius. As a result, 
we know very little concerning the pinning properties of 
organic superconductors. As compared to HTS, the 
difficulty here lies in the fact that the statistical 
distribution of the Josephson parameters, including 
Josephson currents, is extremely large because of the 
fractal spin-glass-like nature of the Josephson-junctions 
network. New investigations with the 80 K 
transformation in mind are needed. Therefore, it will be 
very interesting to extend the present measurements and 
analysis to other organic superconductors. It will be also 
very interesting to apply the same annealing-cooling-
warming procedures to the transport properties and try to 
correlate these properties in the superconducting and in 
the normal phases. 
 From our analysis we propose that when the 
magnetic shielding is imperfect (after correcting for the 
demagnetizing field) it is generally more correct to 
consider the sample as multi-domain-like rather than 
being made of a single superconducting domain, and to 
determine the characteristic size of the grains from the 
experimental data. 
 We have discussed and sometimes established the 
optimum conditions to interpret the experimental data 
and determine the important physical parameters such as 
Vs (the true fractional volume), Jc and λ.

Finally, we can apply the same analysis to carbon 
nanotubes, the superconducting properties of which are 
not clear though they have been the focus of 
considerable research activity in recent years. 
 It is clear from all the above discussions and results 
that organic superconductors offer a unique opportunity 
to study (and perhaps to distinguish between) the 
contributions of various physical defects and thermal 
fluctuations to the broadening of the superconducting 
transition around Tc. These materials also offer a vast 
(still almost virgin) field to study the pinning properties 
of the vortex lattice. 
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