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Abstract 
In the quest for understanding correlated electrons, high-temperature superconductivity remains a formidable challenge and a source 
of insight. This paper briefly recalls the central achievement by the study of heat transport at low temperatures. At very low 
temperatures, nodal quasi-particles of the d-wave superconducting gap become the main carriers of heat. Their thermal conductivity 
is unaffected by disorder and reflects the fine structure of the superconducting gap. This finding had led to new openings in the 
exploration of other unconventional superconductors 
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1. Introduction  
In spite of many years of intense research by a sizeable 
fraction of the condensed-matter physics community, 
high-Tc superconductivity remains a mystery[1]. A 
central question is the extent of the validity of Landau’s 
Fermi liquid picture to describe the elementary 
excitations of the normal state. High-Tc cuprates are 
doped Mott insulators[2]. In other words, the parent 
compound is host to a particularly strong Coulomb 
repulsion, which should still be present when mobile 
carriers are added. It remains to be established, however, 
to what extent the strength of Coulomb repulsion 
becomes an obstacle for the formation of Landau quasi-
particles in the zero-temperature limit.  
 Ironically, while the normal state of the high-Tc
superconductivity remains a subject of intense 
controversy, the superconducting state appears less 
mysterious now than a decade before. Its exploration has 
led to a consensus on the d-wave symmetry of the order 
parameter[3]. The BCS theory of superconductivity 
applied to a d-wave superconductor appears to provide a 
successful explanation of a number of experimental 
features. In some cases this exploration has provided 
new insights for the investigation of other 
unconventional superconductors. This article focuses on 
the particular issue of heat transport at very low 
temperatures.  
 
2. Nodal quasi-particles of a d-wave superconductor 
In a nodal superconductor, the two-particle wave-

function representing the superconducting order parameter 
changes sign along particular orientations in the reciprocal 
space. Consequently, the superconducting gap vanishes 
along these orientations. In a d-wave superconductor, the 
density of states in the vicinity of such a node is a linear 
function of energy. In such a configuration, the 
elementary excitations are massless and the quasi-
particles are Dirac Fermions (See figure 1). 
 In a pure d-wave superconductor, there are no zero-
energy excitations at nodes. According to the theory, 
however, even an infinitesimal amount of disorder 
breaks Cooper pairs and creates a finite density of states 
at zero energy. Therefore, both specific heat C, and 
thermal conductivity, κ , of a d-wave superconductor 
should present a finite temperature-linear term in the 
zero-temperature limit.  
 
3. Thermal conductivity and specific heat 
According to classical kinetics, in a gas-like system of 
particles, the amplitude of these two quantities are 
intimately linked through the equation:  

1
3

Cκ υ= l . (1) 

Here υ is the velocity and l is the mean-free-path. 
Often, thermal conductivity cannot be interpreted in a 
straightforward manner. The variation of l with 
temperature is not trivial and adds up to the 
particularities of the change in the density of states 
reflected in C. However at low enough temperature, the 
mean-free-path attains its maximum value and as the  



160 K Behnia IJPR Vol. 6, No.3  

 
Figure 1. A d-wave superconducting gap around a two-
dimensional circular Fermi surface. In the vicinity of each 
node, k1 and k2 are vectors normal and parallel to the Fermi 
surface. 
 
velocity is also constant, both thermal conductivity and 
specific heat simply reflect the temperature dependence 
of the density-of-states, which is T-linear for Fermions 
and 3T  for Bosons.  
 There is, however, an important difference between 
these two measurable quantities. While only itinerant 
excitations participate in the transport of heat, the 
specific heat includes a contribution by local excitations. 
Therefore, only in the case of thermal conductivity the 
measured quantity directly reflects the presence of 
itinerant quasi-particles. superconducting gap in a d-
wave superconductor.  
 
4. Universal thermal conductivity 
Heat is transported by both electrons and phonons. The 
separation between these two components of thermal 
conductivity is seldom straightforward. At low enough 
temperature, the phonon heat transport becomes ballistic. 
In other words, the mean-free-path of phonons attains 
the maximum value set by the finite dimensions of the 
sample. In this regime, κph is expected to display a 3T  
variation. Plotting the thermal conductivity divided by 
temperature as a function of 2T , one expects to have:  

3a bT
T
κ
= + . (2) 

Here, a represents the Fermionic (quasi-particle) 
component and b is the Bosonic (lattice) term of the heat 
transport.  
 By measuring thermal conductivity in a temperature 
range which is three orders of magnitude lower than the 
critical temperature and using equation 2 to extract a 
finite a, solid evidence was provided for the presence of 
itinerant fermions deep inside the superconducting 
state[4]. These itinerant Fermions are the nodal quasi-
particles of the d-wave gap and their contribution to heat 
transport extracted using equation 2 is designated here 
by κ00. This is the electronic T-linear thermal 
conductivity in the zero-temperature limit.  
 In 1997, an experiment by Taillefer et al.[4] revealed 

an intriguing feature of transport by nodal quasi-
particles. This feature was first theoretically worked out 
for microwave conductivity [5] and has been since 
dubbed universal conductivity. The term universal refers 
to the insensitivity of the magnitude of κ00 towards 
disorder. Indeed, disorder leads to a reduction of the 
mean-free-path. Thus, it should induce a reduction of 
conductivity. But, by breaking Cooper pairs, disorder 
also induces an increase in the density-of-states and 
provides heat carriers. According to the theory [6-8], for 
a d-wave gap, these two opposing tendencies 
compensate each other in such a way that leaves the 
overall thermal conductivity unaffected. This is why κ00 
is not to be affected by the introduction of disorder.  
 To be more specific, according to the theory, κ00 is 
related to the fine details of the electronic energy 
spectrum. The dispersion in the vicinity of a node can be 
expressed as:  

2 2 2
1 2 2FE k kυ υ= +h . (3) 

Here, k1 and k2 are unitary vectors in the reciprocal 
space. k1 is normal to the Fermi surface and k2 is 
perpendicular to it (See figure 1). Fυ  is the more 
familiar Fermi velocity. 2υ , which is sometimes 
designated as v∆, is called gap velocity. It is proportional 
to the slope of the d-wave gap, at the node:  

2
1

node
F
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k d
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φ
∆

= |
h

. (4) 

The angle φ  represents the in-plane angle in the 
reciprocal space. Now, the magnitude of κ00 is linked to 
the ratio of these two velocities in the following way:  
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. (5) 

In cuprates, vF >> v2 and the second term in the brackets 
of the right hand side can be safely omitted.  
 
5. Thermal conductivity of cuprates in the zero 
temperature limit 
During the last few years, a finite κ00 has been detected 
in five families of hole-dope cuprates. These are 
YBa2Cu3O7-δ (Y-123) [4], Bi2Sr2CaCu2O8-δ (Bi-2212) 
[10-12], La2-xSrxCuO4 (La-214) [13,14], Tl2Ba2CuO6-δ 
(Tl2201) [15] and Bi2+xSr2-xCuO6+δ (Bi-2201) [16,17]. 
Figure 2, represents the data for three compounds 
obtained in my group. 
  The magnitude of κ00 obtained in these compounds at 
optimal doping level is summarized in Table 1. If one 
assumes that the d-wave gap has the standard angular 
dependence (∆=∆0cos(2φ), on can extract the magnitude 
of the maximum gap, ∆0, which is comparable to what 
has been directly measured by Angular Resolved 
Photoemission studies. This indicates that the theory is 
on the right track.  
  In two cases, the insensitivity of κ00 to the level of 
disorder was experimentally verified. In the case of Y-
123, even after replacing 3 percent of Copper atoms by 
Zinc, leading to a tenfold decrease in the quasi-particle  
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Table 1. The magnitude of κ00 in three different cuprates. The ratios of two velocities is extracted from κ00. The latter yields the 
maximum value of the superconducting gap (See text).  
 

compound Tc (K) κ00(mWK-1cm-1) vF/v2 ∆0(meV) 

Y-123 91 0.12 12 50 
Bi-2212 90 0.19 19 30 
Bi-2201 10 0.33 18 8.6 

 

 
Figure 2. (color online) Thermal conductivity of three optimally-doped cuprates at low temperatures. Tκ/  is plotted as a function of 
T2, in order to separate lattice and electronic contributions. Open squares represent Y-123 , solid circles Bi-2212 and open circles Bi-
2201. Lines are extrapolations to zero-temperature and allow to extract κ00. 
 
mean-free-path, no change in the magnitude of κ00 was 
resolved[4]. A similar result was obtained in the case of 
Bi-2212[12], where disorder was induced using 
irradiation by high-energy electrons. More recently, 
Ando and collaborators[19] have reported a finite 
deviation from universal conductivity in underdoped 
cuprates which is particularly sizeable in LSCO. 
  On the other hand, κ00, has been also studied was as 
a function of doping dependence[13,18]. It was found 
that it decreases steadily as the Mott insulator is 
approached. If one assumes that κ00 continues to 
inversely scale with the superconducting gap in the 
underdoped regime, this result (as argued by Sutherland 
et al.[18]) points to a superconducting origin for the 
pseudogap. 
 The field dependence of thermal conductivity has 
proved to be interesting too. In the optimally-doped or 
overdoped cases, κ00 increases as a function of magnetic 
field[20,21], providing an experimental confirmation of 
Volovik excitations [22] associated with a d-wave 
superconductor. In underdoped LSCO, however, κ00 
decreases with magnetic field displaying the thermal 
equivalent of the metal-insulator transition observed by 
resistivity measurements [14,23].  
 

6. Universal thermal conductivity in other 
unconventional superconductors 
During the past decade, low temperature thermal 
conductivity of other superconductors was also explored. 
A finite κ00 was observed in the organic superconductor 
κ-(ET)2Cu(NCS)2 with a magnitude comparable to what 
is theoretically expected [24]. The d -wave 
superconductivity in this system remains most plausible. 
However, it is not the object of a consensus among 
researchers in the field [25]. 
 Very recently, a finite κ00 was reported in CePt3Si 
[26], which is a heavy-fermion superconductor with a 
crystal structure with no inversion symmetry. The 
magnitude of the observed term is in very good 
agreement with the theoretical expectation, providing 
evidence in favor of the presence of line nodes in this 
superconductor. 
 The most convincing case for universal conductivity 
has been made for the unconventional superconductor 
Sr2RuO4[27]. Suzuki et al.[28] reported that the 
magnitude of κ00 is almost insensitive to disorder. 
Moreover, the slight increase with the change in the 
scattering rate was found to be in excellent agreement 
with the theory. This result imposes strong constraints on 
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the possible symmetries of the superconducting order 
parameter in this unconventional superconductor. While, 
it is widely believed to be a triplet superconductor, the 

precise identity of the order parameter has not been 
settled down. 
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