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Abstract 

Two dark energy models  2Λ  a a  and Λ  a a  are studied by taking into account the gravitational constant G is a time-

dependent parameter in the framework of Chern-Simons modified gravity. It is found that the gravitational constant shown the 
increasing behavior proportional to those of the time parameter for each model. These models are compared with observational 

results by regulating the values of the parameters. Our investigations indicated that the model  2Λ  a a  is generally attractive in 

nature while the other model Λ  a a  coincides to the repulsive situation and consequently match with the current scenario of the 

accelerating universe. We calculated the variation of G(t) which showed that it changes rapidly when the value of ω is taken between 
the limit 1.33 0.79   ω  . It is viewed that due to the composite influence of time-variable Λ and G(t), the universe expanded 
with acceleration. Further, it is estimated that the range for variation of G(t) with proper tuning of parameters α and β is given 

as   11 11.89 0.10 10 yr 0,  G G         which match with Ia type supernova. 
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1. Introduction  
Current cosmological observations advocated that the 
universe is currently going through an accelerated phase 
of expansion. the observations such as cosmic 
microwave background radiation [1] and sloan digital 
sky survey [2] predicted that the universe had a negative-
accelerated phase of expansion in ancient times to 
facilitate structure arrangement of it. this phenomenon is 
commonly named dark energy (de) posses large negative 
pressure supposed to comprise about 68% contents of the 
universe, 27% dark matter and only 5% byronic matter 
[3]. the nature of de is a big mystery for the cosmologists 
and astrophysicists. in this scenario, many efforts have 
been done to resolve this long-standing issue but an 
acceptable answer is still a dream. different 
modifications in general relativity have been suggested 
such as f(R) gravity, f(T) gravity, Gauss-Bonnet theory, 
Lovelock gravity, scalar-tensor theories and Chern 
Simons (CS) modified gravity theory, etc. 

CS modified gravity initially developed in  

3-dimensions by Jackie and Pi [4] elongated it into 4-
dims by adding an external scalar field. A number of 
holographic DE models have been discussed in this 
theory. Pasqua, et al. [5] analyzed in detail the 
holographic DE model with Granda-Oliveros cut-off, 
modified holographic Ricci DE model and a model with 
higher-order derivatives of the Hubble parameter. 
Myung [6] revisited Ricci DE in CS modified gravity. 
He made an assumption that the cosmological evolution 
is nothing but the Ricci DE with a minimally coupled 
scalar without potential means that the role of CS term is 
suppressed. Li. et al. [7] put observational constraints on 
the interaction and spatial curvature in the holographic 
DE model. They considered three kinds of 
phenomenological interactions between holographic DE 
and matter, i.e., the reciprocation term Q is proportional 
to the energy densities of DE (ρm), matter (ρΛ), and 
matter plus DE (ρm+ ρΛ). 

Huang and Gong [8] used the type Ia supernova data 
to investigate the model of holographic DE. For d = 1, 
they got best fit result �0

m = 0.25, the equation of state 
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for holographic DE ω0

Λ= -0.91 and the evolution 
between the decelerating expansion and accelerating 
expansion occurred when the cosmological red-shift was 
zT = 0.72. Elizalde with his research fellows [9] planed 
the structure of DE models with an efficient phantom 
phase but without exotic matter. They also generalized 
holographic model that was produced in the presence of 
an infrared cut-off. 

Jawad and Sohail [10] discussed the DE phenomenon 
by considering the modified QCD ghost DE in the 
framework of dynamical CS modified gravity. They 
found an analytical solution of scale factor and 
investigated different cosmological parameters in this 
set-up. They also showed that the deceleration parameter 
identifies different states of the universe under certain 
conditions of constant parameters.  Ali and Amir [11-13] 
studied some holographic DE models in the framework 
of CS modified gravity by considering the FRW 
universe. They examined the equation of state parameter 
using Granda and Oliveros infrared cut-off proposal 
which expressed the accelerated expansion of the 
universe in the context of CS modified gravity theory. 

Porfirio et al. [14] established the correspondence for 
G�del-type solutions within the 4-dimensional CS 
modified gravity with the non-dynamical CS coefficient 
for various forms of matter such as dust, fluid, scalar 
field, an electromagnetic field, and related causality 
problems. Konno et al. [15] discussed rotating black hole 
solutions in the framework of CS modified gravity 
theory by taking a description of agitation around the 
Schwarzschild solutions. Guarrera and Hariton [16] 
designed a preserved, symmetric energy-momentum 
pseudo tensor using CS modified gravity which showed 
that it is Lorentz invariant. Nandi et al. [17] analyzed the 
impact of CS modified gravity on the quantum phase 
shift of de Broglie waves in neutron interferometry. 
Chen and Jing [18] investigated the geodesic precession 
and the strong gravitational lensing in the slowly rotating 
black hole in the dynamical CS-modified gravity theory. 
This article is organized in the following order: In 
section 2, we wrote the brief introduction and formalism 
of Chern-Simons modified gravity. Dark energy models 
and basic field equation of CS modified gravity theory 
are constructed in section 3. We proceed the study to two 
different DE models and investigated them in secion 4 
and 5. Last section is devoted for summery and 
conclusions. 
 
2. Formulism of Chern-Simons Modified Gravity 
An impressive principle of modification of GR is CS 
modified gravity theory which developed on the leading-
order gravitational parity violation. It is inspired by 
peculiarity cancellation in particle physics as well as 
string theory. The Einstein Hilbert action is modified by 
adding CS and scalar field terms. 

Θ   EH CS matS S S S S   (1) 

Where Einstein Hilbert term is denoted as 
4 EH

v

S κ d x g R   (2) 

CS term is represented as 

4 *1
Θ

4
  CS

v

S α d x g RR   (3) 

term scalar field expressed 

  41
Θ Θ 2 (Θ)

2
       ab

a b
v

S β d x g g V   (4) 

an additional undefined matter contributions is given as 
4 £ mat mat

v

S d x g   (5) 

Where £mat  represents some matter Lagrangian density, 

1

16π G
κ , g is determinant of metric, ∇a covariant 

derivative, R is a Ricci scalar and integrals represent the 
volume executed anywhere on the manifold. Pontryagin 

density * RR  is mathematically given as 
* *  acd b

b acd RR RR  R R   (6) 

Dual Riemannian tensor defined as 

* 1

2
acd cdef a

b bef R R   (7) 

where cdef  four dimensional Levi-Civita tensor. 

Formally, * Λ RR R  R , however, the curvature tensor 
is supposed to be Riemannian tensor. 
Now the variation of action w.r.t metric gab and scalar 
field Θ, we obtained set of field equations of CS 
modified gravity in the following form 

 1
,  

2
   m θ

ab ab ab abG αC T T
κ

 (8) 

Θ *
4

   ab
a b

κα
g RR  (9) 

where Gab is Einstein tensor, α coupling constant, Cab is 
cotton tensor defined as 

1 1

22

      
τμab σμζη ν σνζη

σ ζ η στ ζηC v R v R
g

    (10) 

where σv =σ Θ and στv = σ τ  Θ. The energy 

momentum tensor Tab comprises of matter part and 
external field part defined as 

   m
ab a b abT ρ p U U pg ,  (11) 

     Θ Θ Θ Θ Θ
2

     α
ab a b ab α

η
T η g   (12) 

Here p, ρ and U are pressure, energy density and the 
four-vector velocity in co-moving coordinates of the 
spacetime. 

The Chern-Simons gravitational modification has 
been mostly studied in the non-dynamical context. In 
this context, the scalar field is non-dynamical thus it is 
supposed to be prior prescriptive function of spacetime. 
This type of investigations is mostly introduced in the 
evaluation of approximate solutions, sometimes exact 
solution, cosmological study, astrophysical tests and 
matter interactions. 

In non-dynamical CS modified gravity theoretically 
problematic association between Schwarzschild black 
hole perturbation theory, the occurrence of static and 
axisymmetric solutions and uniqueness of solutions 
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theory, has been demonstrated. But there are numerous 
issues in non-dynamical theory:- (i) During the rotation 
of black hole singularities of curvature to be seen on the 
rotational axis, (ii) oscillation modes of massive group of 
black hole is hidden, (iii) Commonly ghost arises. 
Therefore, the dynamical CS modified gravity including 
kinetic term for scalar field is prescribed by several 
authors to overcome above mentioned issues and to 
preserve the self-stability of the theory. Problems (i) and 
(ii) mentioned above do not arise in the dynamic theory 
and last one does not occur in a particular conditions. 
Consequently, the dynamical CS modified gravity has 
captured more interest in recent age. 
 
3. Dark Energy Models in CS Modified Gravity 
The appearance of objects at cosmological distances is 
affected by the curvature of spacetime through which 
light travels on its way to earth. Einstein's theory of 
relativity entirely describes the geometrical properties of 
the universe.  Metric is a fundamental quantity in GR 
which characterizes the geometry of spacetime. The 
curvature of space may deviate with time in the 
homogeneous and isotropic universe, at a given time its 
value remains uniform everywhere since Big Bang. In 
the mid of 1930, Robertson with his co-workers 
independently proved that the FRW metric is the most 
general metric for describing the expanding 
homogeneous isotropic universe. A homogeneous and 
isotropic universe expressed by the FRW metric is given 
by 

 

 
2 2 2

2 2 2 2 2
2

1
sin .

1

 
 

   
 

ds dt a t

dr r dθ θd
κr

  (13) 

The field equations of CS modified gravity in the 
presence of cosmological constant Λ are given by 

ΘΛ
8

8
       

m
μν μν μν μν μνG lC πG T g T

πG
  (14) 

The 00-components of Eq. (14) are given as 
2

2
2

3 1
3 Λ 8  .

2
      
 

 a k
Θ πGρ

a a
  (15) 

Using Eq. (9), we explored the value of external field Θ 
in the dynamical CS gravity theory. It is mentioned here 
that all the components of Cotton tensor are turned to be 
zero for FRW metric, it is also noted that the Pontryagin 
term becomes zero identically so Eq. (9) reduces to 

Θ Θ Γ Θ 0         
μν μν β

μ ν μ ν μν βg g  (16) 

In dynamical case Θ is a function of spacetime 
coordinates. For the sake of simplicity, we consider Θ is 
a function of time parameter and hence evaluated as 

3Θ  ca   (17) 
Substituting this value in Eq. (15) and taking into 
account that universe is flat, one arrived at 

2
61

3 Λ 8 .
2

     
 

a
ca πGρ

a
  (18) 

The 11-component of Eq. (14) is given by, 

21 Λ
4

2 2
     
 

a a
πGp

a a
 (19) 

Solving Eq. (18) and Eq. (19) simultaneously it turned 
out 

 3 4 Λ
     
 

a
πG ρ p

a
 (20) 

Since the Hubble parameter H
a
a

. In term of Hubble 

parameter the Eq. (18) and (20) we obtained 

2 61 1
4 3 Λ ,

2 2
     

πGρ H ca  (21) 

 23 4 ( 3 ) Λ    H H πG ρ p  (22) 

 

4. Model with 
2

   
 

Λ
a
a

 

A number of DE models have been suggested to discuss 
the universe [19-21]. In this paper, we took a model 

Λ= 
2

 
 
 

a
a

=3α H2, where α is the free parameter [22] and 

substituting in Eq. (21) such that 

  6
23 1

4
2 4


 

α ca
πGρ H  (23) 

The barotropic equation of state p=ωρ, here ω is the 
parameter equation of state and depends on time, redshift 
or scale factor in general. Making the use of barotropic 
EoS in Eq. (22), we obtained the following result 

   2 23 H 4 1 3 .   H πGρ ω αH  (24) 

From Eq. (23), put the value of 4πGρ  in Eq. (24) we 

have 

 
6

2 2 23(1 )
3 H (1 3 )

2 4

 
     

  
 α ca

H H ω αH  (25) 

The simultaneous solution of Eq. (23) and Eq. (25) look 
like to be 

2 63(1 )(1 ) (1 3 )
H

2 12
  

  α ω ω
H ca  (26) 

For analytic solution it can be written in the following 
form 

2
62 3(1 )(1 ) (1 3 )

2 12
      

 

a α ω a ω
ca

a a
 (27) 

This 2nd order differential equation is executed using the 
method of reduction of order by substituting = y in Eq. 
(27)  

52 3(1 )(1 ) y2 (1 3 )

2 12
   

 
dy α ω ω

y ca
da a

 (28) 

Again, it can be reduce into linear differential equation 
by substituting y2= v, 

52 3(1 )(1 ) (1 3 )
,

6
    

 
dv α ω ω

v ca
da a

 (29) 

which gave the analytic solution as under 

4

(1 3 ) 1

36 18(1 )(1 )



   

ω c
v

α ω a
 (30) 
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Figure 1. The graph of scale factor parameter a(t) versus cosmic time (t). 

 

 
Figure 2. Graph of energy density parameter ρ(t) versus cosmic time t. 

 

 
Figure 3. Graph of DE model parameter Λ(t) versus cosmic time t. 

 
Using backward substitution and integrating Eq. (30) we 
arrived at 

 
1

3
1

(1 3 )
3

36 18(1 )(1 )

 
  

    

ω c
a t t c

α ω
 (31) 

where c1 is the constant of integration. 
To analysis the behavior of scale factor, authors plotted a 
graph b/w scale factor "a" and cosmic time "t" for 
different values of parameters α and ω. 

The behavior of scale factor for DE model in CS 
gravity showed that it increases with cosmic time in each 
case. 
The law of conservation of energy in GR is given by 

 3 0  
 a

ρ ρ p
a

 (32) 

Substituting p=ωρ in Eq. (32), this first order differential 
equation is evaluated as  

3(1 )  ωρ a  (33) 

 is the DE density can be explored by using the value of 
scale factor found in Eq. (31), such that 

 
(1 )

2 1
(1 3 )

3
36 18(1 )(1 )

 
 

      

ω
ω c

ρ t c t c
α ω

 (34) 

where c2 is constant of integration.  
The graphical representation of energy density and 

cosmic time for different values of α and ω is shown in 
fig (3, 2). In this graph by fixing c=c1 parameters α and 
ω are varied as illustrative values of α= 5, 4, 3 and ω= -
0.6, -0.5, -0.4 corresponding to red, green and yellow 
curves respectively. 

It is obvious that the of energy density graph for DE 
model in CS modified gravity showed the decreasing 
behavior. 
Making use of values of scale factor and energy density,  
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Figure 4. Graph of time dependent gravitational constant parameter G(t) versus cosmic time (t). 
 

 
Figure 5. Graph of scale factor parameter a(t) versus cosmic time t. 

 
the expression for cosmological parameter adopted as 
DE model, is turned to be 

 
2

1

(1 3 )
Λ

(1 3 )
[ 36 18(1 )(1 )] 3

36 18(1 )(1 )




 
         

α ω c
t

ω c
α ω t c

α ω

 (35) 

We plotted a graph for cosmological parameter and 
cosmic time for various values of α and ω. In this graph 
by fixing c=c1, parameters α and ω are varied α= 5, 4, 3 
and ω= -0.6, -0.5, -0.4 corresponding to red, green and 
yellow curves respectively. 

The graphical behavior of DE model parameter Λ(t) 
in CS gravity showed that Λ(t) decreases as the cosmic 
time increases.  
Making use of ρ(t) and Λ(t) in Eq. (21), we got the 
expression for time dependent gravitational constant 
parameter. 

 
1

( 1)

1

3(1 ) (1 3 )

8 36 18(1 )(1 )

(1 3 )
3 (1 )

36 18(1



  
    
       

ω

α ω c
G t c

πc α ω

ω c
α ω t c

 (36)  

Fig (4) showed time dependent gravitational constant vs 
cosmic time graph for different values of α and ω. In this 
graphical relationship fixing c=c1=1, α= 5, 4,3 and ω= -
0.6, -0.5, -0.4, corresponding to red, green and yellow 
curves respectively.  

From the graph of time dependent gravitational 
constant noted that G(t) started from -0.045 and finally 
approaches to small value with increasing cosmic time. 
 
5. Model with Λ ~ (  )a a   

Let us consider another model Λ=β 
a
a

 =β(H2+ H ) [23] 

where β is a constant, to study the parameters used in 
pervious section. Substituting this model in Eq. (21) we 
got 

  2 61 1
4 3 H

2 2
      

πGρ β H β ca  (37) 

    2 2

6

1
3 H (3

2
1

](1 3 )
2



    

 

 β H β H βH

ca ω
 (38) 

Simultaneous solution of Eq. (37) and (38) give rise to 

 
 

2

6

2 H (3 )(1 )
1 3

.
4



     




β βω β ω H
ω

ca
 (39) 

Now we replace H and H  with scale factor a and 
simplify alike terms such that 

     2
61 3

2 1 3 .
6

      
 

  ωa a
β βω ω ca

a a
 (40) 

Using the similar techniques applied in the previous 
section, one arrived at 

   
1

3

1
1 3

3
6( 3

.
2 2 3 )

 
  

     

ω
a t ct d

β βω ω
 (41) 

where d1 is the constant of integration 
The relationship between scale factor and cosmic 

time for various values of β and ω shown in Fig (5). In 
this graph by fixing c=d1=1, parameters β and ω are 
varied as illustrative values of β= 5, 4, 3 and ω= -0.6, -
0.5, -0.4 corresponding to red, green and yellow curves 
respectively. 

The behavior of scale factor for DE model in CS 
gravity showed the increase with cosmic time. 
Using the expression of scale factor in Eq. (33), we  
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Figure 6. Graph of energy density parameter ρ(t) versus cosmic time t. 

 

 
Figure 7. Graph of cosmological constant parameter Λ(t) versus time t. 

 

 
Figure 8.The evolution of time dependent gravitational constant parameter G(t) versus cosmic time (t). 

 
obtained energy density ρ (t) given as 

 
 

 

2
1

1
1 3

3
6 3 2 2 3



 
 
     

ω

d
ρ t

ω
 ct d

β βω ω

 (42) 

We plotted a graph for energy density and cosmic time 
using various values of β and ω. Taking c=d1=1 along 
with β= 5, 4, 3 and ω= -0.6, -0.5, -0.4 corresponding to 
red, green and yellow curves respectively. 

The graphical behavior of energy density for this 
model in CS gravity showed that ρ(t) starts from high 
positive value and at late time approaches to enough 
small. 

Using the value of energy density, we obtained the 
general solution of cosmological parameter. 

   

   
 

2

1

1 3
Λ

1 3
3 3 2 2 3 3

6 3 2 2 3




  
     

     

ω cβ
t

ω
β βω ω ct d

β βω ω

 (43) 

Fig (7) represents graphical relation of cosmological 
constant parameter and cosmic time for different values 
of β and ω. Supposed value of β, ω and c are same in 
each case. 

The graphical behavior of cosmological constant 
parameter for this model in CS gravity shows that Λ(t) 
decreases as the cosmic time increases. 
Making the use of ρ(t) and Λ(t) in Eq. (21) we got the 
general solution of gravitational constant parameter. 

    
 
 

2
1

1

1 3 3 21

8 6 3 2 2 3

1 3
3 .

6( 3 2 2 3



  
  

     
 
  
     

ω

ω β c
G t c

πd β βω ω

ω
ct d

β βω ω

 (44) 

Where d2 is another constant of integration. 
The time dependent gravitational constant vs cosmic 

time graph for different values of β and ω shown in fig 
(8). c=d1 keeping constant, the parameters β and ω are 
varied as illustrative values of β= 5, 4, 3 and ω= -0.6, -
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0.5, -0.4 corresponding to red, green and yellow curves 
respectively. 

It had been found that graph of time dependent 
gravitational constant G(t) increasing behavior with the 
passage of time. 
 
6. Comparison with other Models 
From Eq. (36) we have 

 3 1

3






 P ωG

G Pt b
 (45) 

As  
a
a

=H so the above expression becomes 

 3 1 
G

ω H
G

 (46) 

Stefaneic [24] discussed the expression for 
G

G
  

  0
Λ 03 1 Ω 

G
η H

G
 (47) 

By the comparison (46) with (47) and using ω0
Λ= 

2

3
  

from recent observational data we obtain 
3 5

2



ω

η  (48) 

Eq. (48) inter-relates with parameter  of the phantom 
energy model. Stefancic [24] studied the dependence of 
G(t) on time is more responsive to the value of the 
phantom energy model parameter . In the ancient 
universe G(t) changed slowly but the variation of G(t) is 
amazing in the present age meanwhile at large time G(t) 
approaching zero. It changes rapidly for more negative 
values of parameter . The increasing negative values of 

 proved the suitable ground for testing different models. 
It would provide the strictest conditions on the growth of 
cosmological constant, energy density and scale factor 
depicted by the parameter . Stefancic [24] mentioned 
that the quantity G(t) changes faster with more negative 
values of . In the present work the expression for G(t) 
showed that it changes rapidly when we use the value of 
ω between the limit -1.33 <ω< -0.79 . 
 
7. Numerical Results 
The variability of gravitational constant with time has 
been proved by a large number of astronomical 
observations. All these observations agreed with Dyson 
opinion as he mentioned that variation of gravitational 
constant G as the order of Hubble parameter H. As H   
t-1, therefore, G decreases as t-1. Zhang and Wu [25] 
proved that current value of H0 = 6.64×10-11yr-1 based on 
the experimental data from WMAP. Cetto et al. [26] 
discussed that astronomical observations according to 
Brans-Dicke theory in which G   t-1 as given below. 

   
3 1

2 2
1 2[ ( )] [ ( )]


 G t c H t c H t ρ t  (49) 

Guenther et al. [27] obtained the range of   
G

 
G 

 by using 

the Helioseismological data and observed best range for 

the variation of G and given as: 

11 11.60 10 yr 0   
G

 
G 

. Damour et al. [28] calculated 

the variation range for   
G

 
G 

 with the help of data 

acquired from Binary Pulsar given as: 

  11 11.89 0.10 10 0.    
G

yr
G

 Gaztanaga et al. [29] 

estimated the optimum range for the G variation using 
the data collected from Ia supernova given as: 

11 110   0<    
G

yr  
G 

 Benvenuto [30] estimated another 

supreme range for the variation of G through astro-
seismological data given by: 

11 1 10 110   102.5 4.5       
G

 yr   yr
G 

. Biesiada 

and Malec [31] used the white dwarf star data and 
determined the best limit for variation of G given as: 

11 14 10.1   
G

yr
G 

. Copi et al. [32] recently 

calculated   
G

 
G 

 using Big Bang nuclei-synthesis as: 

13 1 13 14.1 10 yr 3.5 10 yr      
G

G 
. In the present 

work we estimate the range for variation of G with the 
proper tuning of α and β given as 

11 1(1.89 0.10) 10 0    
G

yr
G

 which match with 

[29]. 
 
8. Summary and Discussion 
In this paper, authors drag out two distinct kinematical 
DE models in the CS modified gravity theory in the 
presence of time-dependent gravitational constant G. We 
evaluated FRW metric in the context of CS modified 
gravity for scale factor a(t), energy density ρ(t), 
cosmological constant Λ(t) and gravitational constant 
G(t). We compared different limits of variations of G 
acquired from theoretical and observational data with the 

expressions for   
G

 
G 

 for both models. We showed that 

the parameters of both models used in the present work 

are adjusted in most cases to equate with ranges of   
G

 
G 

 

collected from different sources. All values of   
G

 
G 

 

discussed showed that gravitational constant is inversely 

proportional to time 1G )~( t  . In GR, Belinchon [33] 

got similar results i.e G t~   during the dimensional study 
using Dirac's large number of the hypothesis (LNH) 
which is clearly opposite to Dirac's conclusion. But in 
the present study G also varies inversely with t. 
Conclusively, it is found that expressions for scale factor 
a(t) and cosmological constant Λ(t) for both models 
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supposed in the present work preserve the same state 
irrespective of variability of gravitational constant G. we 
estimate the range for variation of G with the proper 
tuning of α and β given as 

  11 11.89 0.10 10 yr 0    
G

 
G 

 which match with 

[29]. 
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