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Abstract 

In this study, we present a discrete-time non-Markov process, referred to as an Elephant Random Walk, implemented on 

an infinite one-dimensional lattice, with the inclusion of random memory resetting. Upon each random resetting event, 

the walker completely loses its memory. Through analytical calculations, we determine the moments of displacement in 

the presence of random resetting. Our findings demonstrate that the process does not attain a steady state. However, the 

long-time behavior of the moments reveals that, under specific conditions, the displacement distribution follows a 

Gaussian distribution. By manipulating the resetting mechanism, the transition from diffusive to superdiffusive behavior, 

or vice versa, can be induced in the process. 
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If we look a little carefully at the world we live in, 

resetting can be observed in many occurrences. 

Formatting a hard disk, emptying a recycle bin, getting 

empty a car gas tank, returning home, or housecleaning 

are all events that can be interpreted as resetting. 

Stochastic resetting, which has recently attracted the 

attention of researchers in different field of science 

including physics, can be defined in different forms. In all 

these definitions, stochastic resetting results in a re-

initialization to a quantity such as random returning to a 

fixed location which is the most commonly considered 

definition of stochastic resetting [1-6]. Another form of 

stochastic resetting is random returning to a a fraction of 

the distance from the origin [7,8], to the farthest distance 

of an already visited location from the starting point [9], 

or to one of the previously visited locations in a random 

walk [10,11]. 

Finding a non-trivial non-equilibrium stationary state [4,5] 

and minimizing the mean first-passage time, which is used in 

a search process [6,12], are the most common problems 

raised in many stochastic resetting researches. It has been 

shown that for a normal diffusion in which the probability of 

finding the walker comes from a Gaussian distribution, the 

probability distribution changes to a Laplace distribution 

when the walker resets to a fixed location [4,5]. Tal-

Friedman et al. have shown that even resetting to a fraction 

of the distance from the origin with or without drift leads to 

a non-equilibrium steady-state [7]. 

The study of diffusion phenomena is so wide that its traces 

can be observed in almost all fields of statistical physics. 

They also appear in biological, social and economical 

systems [13-19]. For diffusive phenomena that have a 

Mean Square Displacement (MSD) of the form ⟨𝑥𝑡
2⟩ ∼

𝑡2𝐻 , while normal diffusion is defined by 𝐻 = 1/2 , 

anomalous diffusion is defined by 𝐻 ≠ 1/2 . The 

exponent 𝐻  is known as the Hurst exponent. In a 

superdiffusive regime  𝐻 > 1/2 while in a subdiffusive 

regime 𝐻 < 1/2. An Elephant Random Walk (ERW) is a 

microscopic non-Markov model defined on an infinite 

lattice in discrete time, where the memory of past plays a 

key role in the evolution of the walker  [22]. In this model 

the random walker has memory access to the complete 

history of the random walk. The ERW and its different 

modifications show that memory of the past can lead to 

anomalous diffusions [20-27]. In [28,29], it has been 

shown that the ERW propagator can be non-Gaussian or 

Gaussian depending on the parameters of the problem in 

question. Cressoni et al. [21] have shown that if a random 

walker remembers only the distant past, normal diffusion 

switches to superdiffusion hence, its propagator deviates 

from Gaussian. 

Let us assume that the memory of an ERW is subjected to 

random resetting in the sense that its memory might be 

erased randomly with a certain probability. It is clear that 

if resetting occurs too often then the walker rarely uses its 

memory and the process is basically Markovian. 

However, it is not a priori clear what happens when the 

probability of resetting is not too high. In other words, one 

could inquire whether resetting the memory has any 

impact on the statistics of the walker's displacement, 

resulting in a non-trivial non-equilibrium steady-state or 

inducing anomalous diffusion.  



 

 

 

Figure 1. Illustration of the number of steps kept in memory 

under resetting. At the time step 26 the last reset is occurred; 

therefore, the 26th step is taken according to the dynamical rule 

for the first step. 

Our exact analytical calculations, besides the numerical 

results, show that under certain conditions the ERW in the 

presence of memory resetting, even at extremely low 

resetting probability, makes the ERW propagator 

Gaussian for both reformer and traditionalist elephant. By 

finding the exact expressions for the moments, we show 

that memory resetting can transform a superdiffusion 

process into a normal diffusion process.  

This paper is organized as follows: In Section   2, we 

briefly review the ERW model. In Section 3, we introduce 

the ERW model under memory resetting and using the 

generalized renewal equation, obtain its propagator. In 

Section 4, some recursion relations are solved to obtain 

the exact expressions for the moments of displacement of 

the walker. We will also investigate the long-time 

behaviors of these moments. In Section 5, it has been 

shown, both numerically and analytically, that the ERW 

under memory resetting obeys Gaussian statistics under 

certain conditions. The conclusion is presented in Section 

6. 

ERW: A quick review 

For the sake of completeness, we first restate the ERW 

defined in [22]. In this model, a random walker performs 

a discrete-time random walk on a one-dimensional lattice. 

In order to take a step at time  𝑡 + 1, the elephant looks at 

all the steps it has taken during the process up to time 𝑡. It 
chooses one step among previously taken steps with a 

uniform distribution. This step can be either a forward or 

a backward step. The random walker either accepts the 

chosen step with probability 𝑝 and moves in the direction 

of the chosen step or does not accept it with probability 

1 − 𝑝  and moves in the opposite direction. In the first 

step, the elephant takes one step to the right with 

probability 𝑞 or one step to the left with probability 1 −
𝑞. Starting from 𝑋0 at time 𝑡0 = 0, the following master 

equation governs the ERW propagator 𝑃(𝑌, 𝑡 + 1|𝑋0, 0) 
for 𝑡 ≥ 1 [22]: 

𝑃(𝑌, 𝑡 + 1|𝑋0, 0) =  
1

2
[1 −

𝛼

𝑡
(𝑌 − 𝑋0 + 1)] 𝑃(𝑌 + 1, 𝑡|𝑋0, 0) +   

1

2
[1 +

𝛼

𝑡
(𝑌 − 𝑋0 − 1)] 𝑃(𝑌 − 1, 𝑡|𝑋0, 0) , (1) 

where 𝛼 = 2𝑝 − 1. A negative value of α corresponds to 

a “reformer” elephant, while a positive value of α 

corresponds to a “traditionalist” elephant. It is clear that 

𝛼 = 0 corresponds to a normal Markovian random walk. 

By defining the displacement as 𝑥𝑡 ≡ 𝑋𝑡 − 𝑋0, it has been 

shown that the first and the second moment of 𝑥𝑡  are 

given by [22]: 

⟨𝑥𝑡⟩ = 𝛽
Γ(𝑡+𝛼)

Γ(1+𝛼)Γ(𝑡)
 , (2) 

and 

⟨𝑥𝑡
2⟩ =

𝑡

2𝛼−1
(

Γ(𝑡+2𝛼)

Γ(𝑡+1)Γ(2𝛼)
− 1) , (3) 

in which 𝛽 = 2𝑞 − 1. For 𝑡 ≫ 1 these quantities have the 

following asymptotic behaviors [22]: 

⟨𝑥𝑡⟩ ∼
𝛽

Γ(1+𝛼)
𝑡𝛼 , (4) 

and 

⟨𝑥𝑡
2⟩ ∼

{
 
 

 
 

𝑡

1−2𝛼
                  for      𝛼 <

1

2

𝑡 𝑙𝑛 𝑡                 for      𝛼 =
1

2

𝑡2𝛼

(2𝛼−1)Γ(2𝛼)
      for      𝛼 >

1

2

  . (5)  

In the following section we will add random memory 

resetting to the ERW defined above and investigate its 

effects on the statistics of the walker. 

ERW under random memory resetting 

In this paper we define random memory resetting as 

follows: every time a random resetting occurs the memory 

of the ERW is erased  so that the number of previously 

taken steps in the elephant's memory vanishes (A simple 

sketch is given in Figure 1). Note that the first step of the 

ERW at 𝑡 = 1  could be a biased or an unbiased step, 

determined by 𝑞 . We will call this the biased or the 

unbiased condition hereafter. After every random 

resetting, since there is no memory, the ERW takes a step 

according to the dynamical rule of the first step at 𝑡 = 1. 

In the presence of memory resetting the equation of 

motion can be obtained as follows. Similar to [22], in each 

step the elephant location can decrease or increase by one 

unit. The only difference here is that the probability of 

decreasing or increasing depends on the last resetting 

time; therefore, the location of the elephant evolves 

according to the following rule: 

𝑋𝑡+1 = 𝑋𝑡 + 𝜎𝑡+1. (6) 

At time 𝑡 + 1, if memory resetting occurs, the elephant's 

memory is erased and similar to the first step, σ𝑡+1 takes 

the value 1  with the probability  𝑞   and −1  with the 

probability (1 − 𝑞). If memory resetting does not occur at 

time 𝑡 + 1, the elephant does not remember those steps 

taken before the time at which the last memory resetting 

has happened. Now a time 𝑡′ is randomly selected, with a 

uniform probability, between the last resetting time and 𝑡 
(if no memory resetting has occurred during the process, 

𝑡′  is randomly selected, with a uniform probability, 

between 1 and 𝑡). Then with the probability 𝑝 we have 

σ𝑡+1 = 𝜎𝑡′ , while with the probability (1 − 𝑝) we have 

σ𝑡+1 = −𝜎𝑡′. In order to calculate the ERW propagator in 

the presence of the resetting we can use renewal equation 

to relate the ERW propagator with resetting 𝑃𝑟  to that of 

without resetting 𝑃0 . The subscript 𝑟  (0) indicates that 

this quantity is pertinent to the process in the presence 

(absence) of memory resetting. Using renewal equation, 

the transition probability can be written as follows: 

𝑃𝑟(𝑌, 𝑡 + 1|𝑋0, 0) = (1 − 𝑟)𝑡𝑃0(𝑌, 𝑡 + 1|𝑋0, 0) + 
∑ ∑ 𝑟(1 − 𝑟)𝑡−𝜏∞

𝐽=−∞ 𝑃𝑟(𝐽, 𝜏|𝑋0,0)
𝑡
𝜏=1    



 

 

𝑃0(𝑌, 𝑡 + 1|𝐽, 𝜏) . (7)  
The first term refers to those trajectories in which no 

memory resetting is occurred where (1 − 𝑟)𝑡  is the 

probability that no memory resetting has happened up to 

the time 𝑡 + 1. The second term refers to those trajectories 

in which memory resetting is occurred. 𝑟(1 − 𝑟)𝑡−𝜏 is the 

probability that the last memory resetting has happened at 

the time 𝜏 + 1 where 𝜏 is a time step between 1 and 𝑡. In 

(7), if  𝜏 ≠ 𝑡, 𝑃0(𝑌, 𝑡 + 1|𝐽, 𝜏) should be obtained from 

(1) and for 𝜏 = 𝑡 it is given by: 

𝑃0(𝑌, 𝑡 + 1|𝐽, 𝜏) = 𝑞𝛿𝐽,𝑌−1 + (1 − 𝑞)𝛿𝐽,𝑌+1. 

Moments of displacement  

Using (7) and after some calculations one finds the 

following recursion relation for the  𝑛th moment of 𝑥𝑡 in 

the presence of random resetting at the time  𝑡 + 1  in 

terms of its value in previous times: 
⟨𝑥𝑡+1
𝑛 ⟩𝑟 = 

∑ (𝑛
𝑚
)∑ 𝑟(1 − 𝑟)𝑡−𝜏⟨𝑥𝜏

𝑚⟩𝑟⟨𝑥𝑡−𝜏+1
𝑛−𝑚 ⟩0

𝑡
𝜏=1

𝑛
𝑚=0 + (1 −

𝑟)𝑡⟨𝑥𝑡+1
𝑛 ⟩0 . (8) 

The proof is given in Appendix A. As can be seen, in order 

to obtain the 𝑛th moment, we need all moments in the 

presence and absence of resetting in all times before 𝑡 +
1. Using (8) and after some lengthy but straightforward 

simplifications, one arrives at (the details are brought in 

Appendix B):  
⟨𝑥𝑡
𝑛⟩𝑟 = (1 − 𝑟)𝑡−1⟨𝑥𝑡

𝑛⟩0 +  

2𝑟 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
𝑛⟩0

𝑡−1
𝜏=1 +  

𝑟 ∑ (𝑛
𝑚
)𝑛−1

𝑚=1 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
𝑛−𝑚⟩0⟨𝑥𝑡−𝜏

𝑚 ⟩𝑟
𝑡−1
𝜏=1 +  

𝑟2 ∑ (1 − 𝑟)𝜏−1(𝑡 − 𝜏 − 1)⟨𝑥𝜏
𝑛⟩0

𝑡−2
𝜏=1 +  

𝑟2 ∑ (𝑛
𝑚
)𝑛−1

𝑚=1   

∑ (1 − 𝑟)𝑘−1⟨𝑥𝑘
𝑛−𝑚⟩0∑ ⟨𝑥𝜏

𝑚⟩𝑟
𝑡−𝑘−1
𝜏=1

𝑡−2
𝑘=1  . (9) 

Now for the first moment we have: 
⟨𝑥𝑡⟩𝑟 = (1 − 𝑟)𝑡−1⟨𝑥𝑡⟩0 +    

2𝑟 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏⟩0
𝑡−1
𝜏=1   

+𝑟2 ∑ (1 − 𝑟)𝜏−1(𝑡 − 𝜏 − 1)⟨𝑥𝜏⟩0
𝑡−2
𝜏=1 . (10) 

It is easy to check that ⟨𝑥𝑡⟩𝑟=0  results in ⟨𝑥𝑡⟩0  as 

expected. By substituting (2) in (10) we find: 
⟨𝑥𝑡⟩𝑟 = 𝛽𝑟−𝛼(−𝛼 + 𝑟(𝛼 + 𝑡 − 1) + 1) +  

1

Γ(𝛼+1)Γ(𝑡)
(𝛽(1 − 𝑟)𝑡−1Γ(𝑡 + 𝛼)  

(𝑟2 2𝐹1(2, 𝑡 + 𝛼; 𝑡; 1 − 𝑟) −  
2 𝑟  2𝐹1(1, 𝑡 + 𝛼; 𝑡; 1 − 𝑟) + 1), (11) 
in which the function  2𝐹1(𝑎, 𝑏; 𝑐; 𝑧)  is the 

hypergeometric function defined as: 

 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) = ∑
𝑧𝑘(𝑎)𝑘(𝑏)𝑘

𝑘!(𝑐)𝑘
𝑧𝑘∞

𝑘=0 , 

where (𝑎)𝑘  is the Pochhammer symbol. For 𝑟 ≠ 0 and 

large 𝑡, the second term in (11) drops to zero very quickly. 

In this case the asymptotic behavior of the first moment 

can be readily calculated and is given by: 
⟨𝑥𝑡⟩𝑟 ∼ 𝛽𝑟

1−𝛼𝑡      for      𝑟 ≠ 0     and     𝑡 ≫ 1. (12) 

As can be seen from (4), for 𝛼 < 0 (a reformer ERW) the 

first moment of displacement goes to zero in the long-time 

limit; however, this is not the case in the presence of 

resetting as it grows linearly with 𝑡; therefore, the mean 

displacement increases indefinitely. Note that for 𝛽 = 0 

both  (4) and  (12) becomes zero. Finally, the direction of 

the escape from the starting position is determined by 𝛽 

as in the case 𝑟 = 0. 

We can use (9) to calculate the second moment of 

displacement in the presence of memory resetting: 
⟨𝑥𝑡
2⟩𝑟 = (1 − 𝑟)𝑡−1⟨𝑥𝑡

2⟩0 +  

2𝑟 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
2⟩0

𝑡−1
𝜏=1 +  

2𝑟 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
 ⟩0⟨𝑥𝑡−𝜏

 ⟩𝑟
𝑡−1
𝜏=1 +  

𝑟2 ∑ (1 − 𝑟)𝜏−1(𝑡 − 𝜏 − 1)⟨𝑥𝜏
2⟩0

𝑡−2
𝜏=1 +  

2𝑟2 ∑ (1 − 𝑟)𝑘−1⟨𝑥𝑘
 ⟩0∑ ⟨𝑥𝜏

 ⟩𝑟
𝑡−𝑘−1
𝜏=1

𝑡−2
𝑘=1 . (13) 

As in the previous case, it is easy to check that (13) gives 

the desire result at 𝑟 = 0.  

By substituting (2), (3), and (11)  in (13) one can, in 

principle, calculate the exact analytical expression for 
⟨𝑥𝑡
2⟩𝑟; however, the result will be very complicated and 

does not have a closed form. For 𝛽 = 0 the second of 

moment in the presence of  

resetting ⟨𝑥𝑡
2⟩𝑟|𝛽=0  will be given by the following exact 

expression obtained using MATHEMATICA software: 

⟨𝑥𝑡
2⟩𝑟|𝛽=0 =

𝑡−2𝛼𝑟−2𝛼(−2𝛼+𝑟(2𝛼+𝑡−1)+1)

1−2𝛼
+  

(1 − 𝑟)𝑡−1(
Γ(𝑡+2𝛼)

(1−2𝛼)Γ(2𝛼)
(𝑟 (𝑡 − 1)  

 2𝐹̃1(1, 𝑡 + 2 𝛼; 𝑡 + 1; 1 − 𝑟) +  

𝑟(2𝛼(𝑟 − 1) + 1) 2𝐹̃1(2, 𝑡 + 2𝛼; 𝑡 + 1; 1 − 𝑟)  

− 
1

Γ(𝑡)
)). (14) 

where 2𝐹̃1(𝑎, 𝑏 ; 𝑐; 𝑧) is the regularized hypergeometric 

function defined as  2𝐹̃1(𝑎, 𝑏 ; 𝑐; 𝑧) =  2𝐹1(𝑎, 𝑏; 𝑐; 𝑧)/
Γ(𝑐). On the other hand, for 𝛽 ≠ 0 we find, using 

MATHEMATICA software, that (13) can be very well 

approximated by the following closed formula: 

⟨𝑥𝑡
2⟩𝑟 ≈

𝑡−2𝛼𝑟−2𝛼(−2𝛼+𝑟(2𝛼+𝑡−1)+1)

1−2𝛼
+  

𝛽2𝑟−2𝛼(3𝛼2(𝑟 − 1)2 + 𝛼(𝑟 − 1)(𝑟(4𝑡 − 5) + 1)  
+𝑟(𝑡 − 1)(𝑟(𝑡 − 2) + 2)) +  

(1 − 𝑟)𝑡−1(
Γ(𝑡+2𝛼)

(1−2𝛼)Γ(2𝛼)
(𝑟(𝑡 − 1)    

 2𝐹̃1(1, 𝑡 + 2𝛼; 𝑡 + 1; 1 − 𝑟) +  

𝑟(2𝛼(𝑟 − 1) + 1) 2𝐹̃1(2, 𝑡 + 2𝛼; 𝑡 + 1; 1 − 𝑟)  

−
1

Γ(𝑡)
) +

𝛽2𝑟−2𝛼Γ(𝑡+𝛼)

Γ(𝛼+1)
  

((−3 𝛼 + 𝑟 (3 𝛼 + 𝑡 − 2) + 2) 

 2𝐹̃1(𝑡 − 2,−𝛼; 𝑡; 1 − 𝑟) − 

(−2𝛼 + 𝑟(2𝛼 + 𝑡 − 2) + 2) 
 2𝐹̃1(𝑡 − 1,−𝛼; 𝑡; 1 − 𝑟))). (15) 

In the presence of resetting and in the long-time limit the 

third term in (15) vanishes very quickly; therefore, its 

asymptotic behavior is given by: 

⟨𝑥𝑡
2⟩𝑟 ∼ {

1−2𝛼𝑟1−2𝛼

1−2𝛼
𝑡              for       𝛽 = 0

𝛽2𝑟2−2𝛼𝑡2              for       𝛽 ≠ 0
 . (16) 

Surprisingly, for 𝑟 ≠ 0 the asymptotic behavior of (15) 

reduces to two different behaviors given in (16) 

depending on different values of  𝛽. In other words the 

process is influenced by randomness (the first step after 

each reset) rather than memory dependence. If 𝛽 = 0 the 

MSD grows diffusively with a diffusion coefficient 𝐷 =
(1 − 2𝛼𝑟1−2𝛼)/(2 − 4𝛼) . In Figure 2 (top) we have 

plotted (13) and its asymptotic behavior for 𝑟 = 0.5, 𝛽 =
0.9 and three values of 𝛼. We have also plotted (13) for 

𝛽 = 0, 𝛼 = 0.5 and two values of 𝑟 (bottom). As can be 

seen each curve (denoted by a dotted or a dashed line) and 

its asymptotic (denoted by a solid line) obtained from (16) 

lie along each other. In this case, regardless of the value 

of 𝑟, we have a diffusive behavior. 



 

 

 

Figure 2. (Color Online) Plot of (13) and (16) as dashed and solid 

lines respectively for 𝑟 = 0.5, 0.7 and different values of 𝛼 and 

𝛽. It can be seen that the exact results and their asymptotics 

overlap in the long-time limit. 

 

Figure 3. The phase diagram of the process. It can be seen that 

the process might undergo a transition from diffusive to 

superdiffusive or vice versa depending on the values of the 

parameters 𝜶, 𝜷 and 𝒓. 

It can also be verified that in the presence of resetting, 

𝛼 = 0.5  does not determine the transition between 

diffusive and superdiffusive behaviors which is in 

contrast to the case of 𝑟 = 0. One should also note that 

turning the resetting on or off might result in a transition 

from a diffusive to a superdiffusive behavior or vice versa. 

For instance starting with the values 𝑟 = 0, 𝛼 <  1/2 and 

𝛽 ≠ 0  and then turning the resetting on, the process 

undergoes a transition from diffusive to superdiffusive 

behavior. The phase diagram of the model is given in 

Figure 3.  

Distribution of displacement under unbiased 

condition 

In the absence of resetting, the PDF of the displacement 

of the walker 𝑃0(𝑥, 𝑡)  does not have a Gaussian 

distribution for 𝛼 > 1/2  regardless of the value of 𝛽  

[28,29].   

 

Figure 4. (Color Online) The graph illustrates the PDF of 

displacement under conditions with and without resetting at 

specific time points (𝑡 = 100 and 10000). We have considered 

𝛽 = 0 and 𝛼 = 0.6. Each plot includes the results of a Monte 

Carlo simulation (represented by a dot-dashed line) and a normal 

distribution (represented by a dashed line) with a mean of zero 

and a variance derived from equation (14). In the case of 𝑟 = 0, 

depicted in Figures (a) and (b), it is evident that the curves never 

overlap over time. Conversely, for 𝑟 = 0.1, shown in Figures (c) 

and (d), the curves progressively overlap, indicating a 

convergence towards a residual value of zero (represented by a 

dotted line). 

In what follows we analytically show that, in the presence 

of resetting and under the unbiased condition 𝛽 = 0 , 

while the skewness is always zero, the kurtosis 

approaches to zero in the long-time limit. In this case, 

using (9), it can be seen that all the odd moments are zero. 
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Considering the fact that for 𝑟 = 0 all the odd moments 

are zero, one can see that the third moments is zero under 

the  

unbiased condition: 

⟨𝑥𝑡
3⟩𝑟 = (1 − 𝑟)𝑡−1⟨𝑥𝑡

3⟩0 +  

2𝑟 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
3⟩0

𝑡−1
𝜏=1 +  

𝑟 ∑ ( 3
𝑚
)2

𝑚=1 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
3−𝑚⟩0⟨𝑥𝑡−𝜏

𝑚 ⟩𝑟
𝑡−1
𝜏=1 +  

𝑟2 ∑ (1 − 𝑟)𝜏−1(𝑡 − 𝜏 − 1)⟨𝑥𝜏
3⟩0

𝑡−2
𝜏=1 +  

𝑟2 ∑ ( 3
𝑚
)2

𝑚=1   

∑ (1 − 𝑟)𝑘−1⟨𝑥𝑘
3−𝑚⟩0∑ ⟨𝑥𝜏

𝑚⟩𝑟
𝑡−𝑘−1
𝜏=1

𝑡−2
𝑘=1 . (17) 

It is not difficult to check that all the terms in the above 

equation are equal to zero. One can basically do the same 

calculations for all the odd moment.   

The above result leads to a zero skewness defined as: 

𝛾1(𝑡) =
⟨(𝑥𝑡−⟨𝑥𝑡⟩)

3⟩

⟨(𝑥𝑡−⟨𝑥𝑡⟩)
2⟩
3
2

.        

The kurtosis defined as: 

𝛾2(𝑡) =
⟨(𝑥𝑡−⟨𝑥𝑡⟩)

4⟩

⟨(𝑥𝑡−⟨𝑥𝑡⟩)
2⟩2
− 3  

will then be simplified to: 

𝛾2(𝑡) =
⟨𝑥𝑡
4⟩

⟨𝑥𝑡
2⟩
2 − 3. (18)  

We find that the fourth moment, according to (9), is given 

by: 
⟨𝑥𝑡
4⟩𝑟 = (1 − 𝑟)𝑡−1⟨𝑥𝑡

4⟩0 +     

2𝑟 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
4⟩0

𝑡−1
𝜏=1 +  

6𝑟 ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
2⟩0⟨𝑥𝑡−𝜏

2 ⟩𝑟
𝑡−1
𝜏=1 +  

𝑟2 ∑ (1 − 𝑟)𝜏−1(𝑡 − 𝜏 − 1)⟨𝑥𝜏
4⟩0

𝑡−2
𝜏=1 +  

6𝑟2 ∑ (1 − 𝑟)𝑘−1⟨𝑥𝑘
2⟩0∑ ⟨𝑥𝜏

2⟩𝑟
𝑡−𝑘−1
𝜏=1

𝑡−2
𝑘=1 . (19) 

In the long time limit the fifth term is dominant; therefore, 

the forth moment behaves asymptotically as: 

⟨𝑥𝑡
4⟩𝑟 ∼

3(1−2α𝑟1−2α)
2
𝑡2

(1−2α)2
. (20) 

Now using (16), (18) and (20) one can see that in the long-

time limit the kurtosis 𝛾2vanishes. This confirms that the 

PDF of the displacement becomes a Gaussian in the long-

time limit. 

In Figure 4 we have plotted the Monte Carlo simulation 

results for the PDF of the displacement besides the 

analytical results. We have also brought the residual plot 

defined as the difference between the simulation data and 

those obtained analytically. The Gaussian PDF has a zero 

mean and its variance is obtained from )13). It turns out 

that the difference of the numerical results with the 

Gaussian PDF decreases as time  increases in the presence 

of resetting. It can be shown that if 𝛽 ≠ 0  (the biased 

conditions), the skewness is not zero, so the PDF will not 

be Gaussian. 

Concluding remarks 

This paper investigates a non-Markovian discrete-time 

random walk model on an infinite one-dimensional 

lattice, incorporating memory resetting. Each instance of 

resetting results in the random walker completely erasing 

its entire memory. Our findings demonstrate that, subject 

to a specific condition referred to as the unbiased 

condition, wherein the initial step of the random walk 

following a reset is unbiased, the probability density 

function governing displacement follows a normal 

distribution. Furthermore, our analysis reveals that by 

toggling the resetting mechanism, the random walker 

exhibits a transition from diffusive behavior to 

superdiffusive behavior, or vice versa. Our analytical 

results are corroborated through the utilization of Monte 

Carlo simulations. Asymptotic analysis of the first and 

second moments of the displacement reveals that, unlike 

resetting to a specific point, memory resetting does not 

induce a non-equilibrium steady state. 

Appendix A 

In order to prove (8) we start by multiplying (7) in (𝒀 − 𝑿𝟎)
𝒏 and then sum over all values of 𝒀 which gives: 

∑ (𝑌 − 𝑋0)
𝑛∞

𝑌=−∞ 𝑃𝑟(𝑌, 𝑡 + 1|𝑋0, 0) = ∑ (𝑌 − 𝑋0)
𝑛∞

𝑌=−∞ (1 − 𝑟)𝑡𝑃0(𝑌, 𝑡 + 1|𝑋0, 0) +  

∑ (𝑌 − 𝑋0)
𝑛∞

𝑌=−∞ ∑ ∑ 𝑟(1 − 𝑟)𝑡−𝜏∞
𝐽=−∞ 𝑃𝑟(𝐽, 𝜏|𝑋0,0)𝑃0(𝑌, 𝑡 + 1|𝐽, 𝜏)

𝑡
𝜏=1 . 

Using the fact that: 

∑ (𝒀 − 𝑿𝟎)
𝒏∞

𝒀=−∞ 𝑷𝒓(𝒀, 𝒕 + 𝟏|𝑿𝟎, 𝟎) = ⟨𝒙𝒕+𝟏
𝒏 ⟩𝒓, 

and: 

 

∑ (𝑌 − 𝑋0)
𝑛∞

𝑌=−∞ (1 − 𝑟)𝑡𝑃0(𝑌, 𝑡 + 1|𝑋0, 0) = (1 − 𝑟)𝑡⟨𝑥𝑡+1
𝑛 ⟩0, 

besides the following expansion: 

(𝑌 − 𝑋0)
𝑛 = (𝑌 − 𝐽 + 𝐽 − 𝑋0)

𝑛 = ∑ (𝑛
𝑚
)(𝑌 − 𝐽)𝑛−𝑚(𝐽 − 𝑋0)

𝑚𝑛
𝑚=0 , 

one can simplify the second term of the left hand-side as follows: 

∑ (𝑌 − 𝑋0)
𝑛∞

𝑌=−∞ ∑ ∑ 𝑟(1 − 𝑟)𝑡−𝜏∞
𝐽=−∞ 𝑃𝑟(𝐽, 𝜏|𝑋0,0)𝑃0(𝑌, 𝑡 + 1|𝐽, 𝜏)

𝑡
𝜏=1 =  

∑ ∑ (𝑛
𝑚
)(𝑌 − 𝐽)𝑛−𝑚(𝐽 − 𝑋0)

𝑚𝑛
𝑚=0

∞
𝑌=−∞ ∑ ∑ 𝑟(1 − 𝑟)𝑡−𝜏∞

𝐽=−∞ 𝑃𝑟(𝐽, 𝜏|𝑋0,0)𝑃0(𝑌, 𝑡 + 1|𝐽, 𝜏)
𝑡
𝜏=1 = ∑ (𝑛

𝑚
)𝑛

𝑚=0 ∑ 𝑟(1 −𝑡
𝜏=1

𝑟)𝑡−𝜏 ∑ (𝐽 − 𝑋0)
𝑚∞

𝐽=−∞ 𝑃𝑟(𝐽, 𝜏|𝑋0,0)∑ (𝑌 − 𝐽)𝑛−𝑚∞
𝑌=−∞ 𝑃0(𝑌, 𝑡 + 1|𝐽, 𝜏) =  

∑ (𝑛
𝑚
)𝑛

𝑚=0 ∑ 𝑟(1 − 𝑟)𝑡−𝜏⟨𝑥𝑡−𝜏+1
𝑛−𝑚 ⟩0∑ (𝐽 − 𝑋0)

𝑚∞
𝐽=−∞ 𝑃𝑟(𝐽, 𝜏|𝑋0,0)

𝑡
𝜏=1 =  

∑ (𝑛
𝑚
)𝑛

𝑚=0 ∑ 𝑟(1 − 𝑟)𝑡−𝜏⟨𝑥𝑡−𝜏+1
𝑛−𝑚 ⟩0⟨𝑥𝜏

𝑚⟩𝑟
𝑡
𝜏=1 .  

This will give the final result in (8).  



 

 

Appendix B 

In order to prove (9) we start from (8): 

⟨𝑥𝑡+1
𝑛 ⟩𝑟 = ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝑡−𝜏⟨𝑥𝜏

𝑚⟩𝑟⟨𝑥𝑡−𝜏+1
𝑛−𝑚 ⟩0

𝑡
𝜏=1

𝑛
𝑚=0 + (1 − 𝑟)𝑡⟨𝑥𝑡+1

𝑛 ⟩0, 

to find: 

⟨𝑥𝑡
𝑛⟩𝑟 = ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝑡−1−𝜏⟨𝑥𝜏

𝑚⟩𝑟⟨𝑥𝑡−𝜏
𝑛−𝑚⟩0

𝑡−1
𝜏=1

𝑛
𝑚=0 + (1 − 𝑟)𝑡−1⟨𝑥𝑡

𝑛⟩0 . 

Expanding the above expression gives: 

⟨𝑥𝑡
𝑛⟩𝑟 = (1 − 𝑟)𝑡−1⟨𝑥𝑡

𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝑡−𝜏−1⟨𝑥𝑡−𝜏
𝑛 ⟩0

𝑡−1
𝜏=1 + ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝑡−𝜏−1⟨𝑥𝜏

𝑚⟩𝑟⟨𝑥𝑡−𝜏
𝑛−𝑚⟩0

𝑡−1
𝜏=1

𝑛−1
𝑚=1 +∑ 𝑟(1 −𝑡−1

𝜏=1

𝑟)𝑡−𝜏−1⟨𝑥𝜏
𝑛⟩𝑟   

= (1 − 𝑟)𝑡−1⟨𝑥𝑡
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
𝑡−1
𝜏=1 + ∑ (𝑛

𝑚
) ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥𝑡−𝜏
𝑚 ⟩𝑟

𝑡−1
𝜏=1

𝑛−1
𝑚=1 + ∑ 𝑟(1 − 𝑟)𝑡−𝜏−1⟨𝑥𝜏

𝑛⟩𝑟
𝑡−1
𝜏=1  

. 

We can write the above expression for different values of 𝑡. Here we bring the results up to 𝑡 = 4: 
⟨𝑥1
𝑛⟩𝑟 = ⟨𝑥1

𝑛⟩0, 

⟨𝑥2
𝑛⟩𝑟 = (1 − 𝑟)⟨𝑥2

𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏
𝑛⟩0

1
𝜏=1 + ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥2−𝜏
𝑚 ⟩𝑟

1
𝜏=1

𝑛−1
𝑚=1 + 𝑟⟨𝑥1

𝑛⟩0 , 

⟨𝑥3
𝑛⟩𝑟 = (1 − 𝑟)2⟨𝑥3

𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏
𝑛⟩0

2
𝜏=1 +∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥3−𝜏
𝑚 ⟩𝑟

2
𝜏=1

𝑛−1
𝑚=1 + 𝑟(1 − 𝑟)⟨𝑥1

𝑛⟩0  

+𝑟 ((1 − 𝑟)⟨𝑥2
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
1
𝜏=1 + ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥2−𝜏
𝑚 ⟩𝑟

1
𝜏=1

𝑛−1
𝑚=1 + 𝑟⟨𝑥1

𝑛⟩0)  

           = (1 − 𝑟)2⟨𝑥3
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
2
𝜏=1 + ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥3−𝜏
𝑚 ⟩𝑟

2
𝜏=1

𝑛−1
𝑚=1 + 𝑟⟨𝑥1

𝑛⟩0  

+𝑟 ((1 − 𝑟)⟨𝑥2
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
1
𝜏=1 + ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥2−𝜏
𝑚 ⟩𝑟

1
𝜏=1

𝑛−1
𝑚=1 ) , 

and: 

⟨𝑥4
𝑛⟩𝑟 = (1 − 𝑟)3⟨𝑥4

𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏
𝑛⟩0

3
𝜏=1 +∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥4−𝜏
𝑚 ⟩𝑟

3
𝜏=1

𝑛−1
𝑚=1 + 𝑟(1 − 𝑟)2⟨𝑥1

𝑛⟩0  

𝑟(1 − 𝑟) ((1 − 𝑟)⟨𝑥2
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
1
𝜏=1 + ∑ (𝑛

𝑚
) ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥2−𝜏
𝑚 ⟩𝑟

1
𝜏=1

𝑛−1
𝑚=1 + 𝑟⟨𝑥1

𝑛⟩0)  

+𝑟 ((1 − 𝑟)2⟨𝑥3
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
2
𝜏=1 +∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥3−𝜏
𝑚 ⟩𝑟

2
𝜏=1

𝑛−1
𝑚=1 + 𝑟⟨𝑥1

𝑛⟩0 + 𝑟 ((1 −

𝑟)⟨𝑥2
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
1
𝜏=1 +∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥2−𝜏
𝑚 ⟩𝑟

1
𝜏=1

𝑛−1
𝑚=1 ))  

          = (1 − 𝑟)3⟨𝑥4
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
3
𝜏=1 +∑ (𝑛

𝑚
) ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥4−𝜏
𝑚 ⟩𝑟

3
𝜏=1

𝑛−1
𝑚=1 + 𝑟⟨𝑥1

𝑛⟩0  

+𝑟 ((1 − 𝑟)⟨𝑥2
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
1
𝜏=1 + ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥2−𝜏
𝑚 ⟩𝑟

1
𝜏=1

𝑛−1
𝑚=1 )  

+𝑟((1 − 𝑟)2⟨𝑥3
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
2
𝜏=1 + ∑ (𝑛

𝑚
) ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥3−𝜏
𝑚 ⟩𝑟

2
𝜏=1

𝑛−1
𝑚=1 ) . 

Now, by intuition, one finds: 

⟨𝑥𝑡
𝑛⟩𝑟 = (1 − 𝑟)𝑡−1⟨𝑥𝑡

𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏
𝑛⟩0

𝑡−1
𝜏=1 + ∑ (𝑛

𝑚
)∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥𝑡−𝜏
𝑚 ⟩𝑟

𝑡−1
𝜏=1

𝑛−1
𝑚=1 + 𝑟⟨𝑥1

𝑛⟩0  

∑ 𝑟((1 − 𝑟)𝑘⟨𝑥𝑘+1
𝑛 ⟩0 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
𝑘
𝜏=1 + ∑ (𝑛

𝑚
) ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥𝑘−𝜏+1
𝑚 ⟩𝑟

𝑘
𝜏=1

𝑛−1
𝑚=1 )𝑡−2

𝑘=1  . 

By reorganizing and simplifying some of the terms in the above sum such as: 

𝑟⟨𝑥1
𝑛⟩0 + ∑ 𝑟(1 − 𝑟)𝑘⟨𝑥𝑘+1

𝑛 ⟩0
𝑡−2
𝑘=1 + ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
𝑡−1
𝜏=1 = 2𝑟∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛⟩0
𝑡−1
𝜏=1  , 

∑ 𝑟∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏
𝑛⟩0

𝑘
𝜏=1

𝑡−2
𝑘=1 = 𝑟2 ∑ (1 − 𝑟)𝜏−1(𝑡 − 𝜏 − 1)⟨𝑥𝜏

𝑛⟩0
𝑡−2
𝜏=1  , 

and: 

∑ 𝑟∑ (𝑛
𝑚
) ∑ 𝑟(1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥𝑘−𝜏+1
𝑚 ⟩𝑟

𝑘
𝜏=1

𝑛−1
𝑚=1

𝑡−2
𝑘=1 = 𝑟2 ∑ (𝑛

𝑚
) ∑ (1 − 𝑟)𝑘−1𝑡−2

𝑘=1 ⟨𝑥𝑘
𝑛−𝑚⟩0∑ ⟨𝑥𝜏

𝑚⟩𝑟
𝑡−𝑘−1
𝜏=1

𝑛−1
𝑚=1  ,  

we can rewrite ⟨𝑥𝑡
𝑛⟩𝑟 as follows to obtain (9): 

⟨𝑥𝑡
𝑛⟩𝑟 = (1 − 𝑟)𝑡−1⟨𝑥𝑡

𝑛⟩0 + 2𝑟∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏
𝑛⟩0

𝑡−1
𝜏=1 + 𝑟 ∑ (𝑛

𝑚
) ∑ (1 − 𝑟)𝜏−1⟨𝑥𝜏

𝑛−𝑚⟩0⟨𝑥𝑡−𝜏
𝑚 ⟩𝑟

𝑡−1
𝜏=1

𝑛−1
𝑚=1   

+𝑟2 ∑ (1 − 𝑟)𝜏−1(𝑡 − 𝜏 − 1)⟨𝑥𝜏
𝑛⟩0

𝑡−2
𝜏=1 + 𝑟2 ∑ ∑ (1 − 𝑟)𝜏−1(𝑡 − 𝜏 − 1)⟨𝑥𝜏

𝑛⟩0
𝑘
𝜏=1

𝑡−2
𝜏=1  . 
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