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Abstract 
 Oscillatory behavior of transition temperature in supper lattice, Ni/Au/Ni, has been observed as a function of spacer 
layer, Au. The observed oscillation period is almost the half period of interlayer exchange coupling. The high 
temperature susceptibility of a two - dimensional lattice is evaluated within the Bethe-Peierls-Wiess approximation in 
the presence of a random field with square distribution. This susceptibility is used to evaluate the transition temperature 
of coupled planes as a function of spacer thickness. The calculated transition temperature of coupled planes oscillates as 
half period of interlayer exchange coupling and falls below the results of the uncoupled films at some values of the 
average spacer thickness that were experimentally observed. Additionally, the transition temperature depends on the 
distribution function of random field at the small thickness of spacer. 
Keywords: coupled magnetic planes, transition temperature, random field, interlayer exchange coupling 

1. Introduction 
Magnetic multilayers have provided many interesting 
physical properties in the field of magnetism, and much 
attention has been paid to this research area both 
experimentally and theoretically as it may have potential 
applications in technology [1-4]. Recently it has been 
observed that the Curie temperature, Tc, and ground state 
moments in exchange coupled magnetic multilayers 
oscillate with the spacer thickness like the absolute value 
of interlayer exchange coupling (J12)[2,5]. The Curie 
temperature of a ferromagnetic layer is proportional to 
the average exchange energy per atom within the mean 
field theory, and to J12. In layered magnetic metallic 
structures, the interlayer exchange coupling character 
oscillates between ferromagnetic and antiferromagnetic 
order as a function of the thickness of spacer. The 
conduction electrons in the spacer layers mediate this 
effect. The RKKY model [6-8] is used for the periodic ion 
of the oscillation period of J12 for noble metal spacer [4],
whose Fermi surface is fairly simple. In this model, the 
magnetic layers are described as arrays of localized spins 
interacting with conduction electrons by a contact 
exchange potential. Consequently, we might expect the 
Tc of a periodic stack of ferromagnetic layers to oscillate 
as a function of thickness nonmagnetic layers.  

In the case that J12 =0, we have isolated layers. In 
this case the magnetization depends sensitively on the 
symmetry of the order parameter. If the magnetization is 
kept to the plane by dipolar forces and then along one 
special direction in the film by anisotropy then we are in 
the Ising universality class and the Onsager [9] solution 
is appropriate. If the order parameter has continuo 
symmetry then the situation is more complex. We shall 
assume here that the isolated films do order as is 
observed in the experiment and hence an Ising approach 
is sensible. However, when J12 ≠0, the Ising model 
becomes non-trivial and quite interesting both from a 
practical and theoretical point of view, with relation to 
the problem of two interacting fermionic fields. In this 
case an exact solution is lacking. 
 In the absence of an exact solution for three-
dimensional ordering magnetic multilayers, some models 
are used for solving the problem. A number of attempts 
to go beyond the well-known statistical mechanical 
solution to the two-dimensional Ising problems have 
been proposed for systems of coupled two-dimensional 
Ising planes [0-13]. The system of two coupled, identical 
Ising planes (J1=J2=J12=J0) was first studied by 
Ballentire [14] who investigated the model by high 
temperature series expansions in the case of J12=J0.
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Ferronberg and Landau [15] considered the same two-
layer problem using Monte Carlo simulations and the 
mean-field theory, then some other models are used [16-17]. 

All these theories give the ordering temperature of 
coupled planes to be higher than uncoupled planes 
(Tc>Tuc). This does not agree with experiment [2]. We 
argue that the missing ingredient is an element of 
randomness introduced by fluctuation in the spacer layer 
thickness [18]. 
 In multilayers magnetic thin films, we have 
interference between transmission and reflection spin 
due to the different path travelling from different layers 
(magnetic and nonmagnetic) like light in an optical 
Fabry-Perot cavity and thin films. Deviations from 
uniformity will affect the different magnetic properties 
in the different ways. Roughness in interface creates 
local thickness fluctuations. If there are variations in the 
spacer thickness of multilayers, due to polarization of 
free electrons in metallic spacer by the neighbouring 
magnetic planes, each plane will experience fluctuations 
in the inter-planar coupling ... These effects can be 
induced in random fields (RF) on the magnetic planes. 
 For investigating Curie temperature of multilayers 
thin films, the two- dimensional Ising model with RF 
was chosen, because the strong easy axis, which gives 
order to an isolated plane, is in the plane for the thin 
magnetic layers of Ni (tNi  ≤ 4 ML) [19]. The random-
field Ising model [20] has been an important focus of 
theoretical and experimental studies of the statistics of 
random and frustrated systems[21]. This model is used 
in dilute antiferromagnet [22] and physics of spin glasses 
[23]. The simplest way to treat this problem is by the 
mean-field theory. This was carried out for a model with 
Gaussian and square distributions of RF’s [18]. It was 
shown that the effect of a RF on a two-dimensional Ising 
ferromagnetic lies in the Curie temperature of 
ferromagnet and below the Curie temperature of the 
plane without randomness [24-26]. The approximation is 
an improvement over the mean-field theory which is the 
Bethe-Peierls-Wiess approximation (BPW), since it 
takes into account specific short-range order. The goal of 
this research is to investigate an expression for the 
paramagnetic susceptibility, χp(T), of an Ising plane in 
the presence of RF with square distributions (SD) in 
BPW when the RF’s are varying very slowly over a 
correlation length. By using the mean field theory 
between the planes, the expression for the susceptibility 
of multilayers is used to obtain the Tc when the J12 is 
weak.  
 In the BPW, we first choose a “central spin”, ~

0σ The 

spin 0σ and its q nearest-neighbours )44321 =σσσσ q,,,
are treated exactly while the effect of the remainder of 
the lattice on the nearest-neighbours shell is taken into 
account in the mean-field approximation. In other words, 
we imagine that a cluster consisting of the “central spin” 

and its q nearest-neighbours is immersed in the 
background provided by the remainder of the spins in 
such a way that each of the spins 4321 ,,, σσσσ
experiences an effective local field, H, created by the 
spins outside this q+1-spin “cluster”. We first evaluate 
the thermal average magnetization of the site centre of 
cluster, 〈σ0〉, and its neighbours, 〈σ1〉, as in the normal 
BPW with RF, then equate 〈σ0〉 to 〈σ1〉 to find the 
effective field, H, and then takes the average over the RF 
(the configuration average over the random fields). This 
corresponds to the solution of a problem in which the RF 
is varying smoothly over a correlation length. 

In this approximation the Hamiltonian of the q+1-
spin “cluster” is given by 
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where the first term describes the Ising interaction 
between σ0 and its nearest neighbours, H is the uniform 
external magnetic field on the shell, Jh is the external 
field, h0 is RF acting on site 0, h1 is RF acting on 
neighbours that is different from h0 because we should 
look at the problem as two spins, one in the centre of 
cluster and one in the neighbourhood. In real problem h1
is the resultant of RF’s of neighbours, so its amplitude is 
different from the site centre (h0). The partition function 
of the q+1-spin “cluster” is, therefore,
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where β = 1/kBT, kB is Boltzman constant, and T is 
temperature. For a plane with square lattice, the right 
hand side of this equation can be written as a sum of two 
terms 
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Since the ferromagnet is translationally invariant, we 
must have .10 σσ = This leads to the self-
consistency condition that H is determined by  

 (4)
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Now we have to solve the eq. (4) for the unknown 
effective field H. By using the equation  
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in the eq.(4), the effective field is obtained as               
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Then, the thermal average of magnetization is given as 
( ).)hh())hH(tanhJ(tanhharctantanh 0104 +β++ββ=〉σ〈 (6) 

By replacing eq. (5) in eq.(6), we can write the 
expression of the thermal average magnetisation as 
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This equation is a function of RF’s . 
For any symmetric distribution of RF’s we can write 
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The configuration average over the RF’s { hi } for every 
site is given as  
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where p(hi) is the distribution function, and lα is the 
thermal average of magnetization. The probability for 
RF with square distribution is given as 
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then the average of the magnetization, σ , over RF’s 
h0 and h1 is given by  
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where δ2 and ∆2 are full-width of h0 and h1,
respectively. The double integrals of the 〈〈σ〉〉 is not so 
difficult to evaluate with the square distribution. The 
susceptibility of a plane in BPW is given as 
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We follow the same procedure as was done on 〈〈σ〉〉 for  
〉〈 dhdH / , this means that one integrates the expression 

dh/dH over the h0 and h1 with square distributions. By 
using the expressions ∂〈〈σ〉〉/∂h, ∂〈〈σ〉〉/∂H and 〈dH/dh〉
in eq. (10), χp is given as  
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At high temperature (Tc ≥T), when H≅0, h ≅0, and by 
defining εδ∆ = where ε is a constant, the χp is given by 
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When 0→δ → >?(zero randomness), ?the eq (11) simplify 
as 
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We recover the usual χp of BPW.  
 The inverse susceptibility, 1/(J0χp), of square and 
Gaussian distribution (from papers [27] ) were plotted 
(figure 1) when ε=1 and δ/J0= 0.3. The plot shows that 
1/(J0χp) is zero at smaller temperature when the RF is 
present. It confirsms a divergence at a reduced value of 
Tc. The reduction of Tc is smaller for long correlation 
length, and bigger for Gaussian than square distribution.  
Ordering temperature of coupled planes, Tc, is given by 
the solution of the equation 2J12χp=1 that in the 
previous paper was obtained [18]. In this model, Tc

depends on J12 , δ and ε � and can be higher or lower 
than the Curie temperature of an isolated plane.  
 We present the theoretical results on the Tc of well 
characterized Ni/Au/Ni multilayers which was measured 
by Bayreuther, et.al., [2]. In a multilayer J12 is an 
oscillating function [1] of the spacer thickness, t. 
Suppose J12 is given by 

.)cos(12 ϕΛγ += − tAeJ t (13) 
The halfwidth of the RF is given by 
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∂
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in which A is a constant, t is the thickness of spacer 
Au[111], Λ is the oscillation period. The observed 
oscillation period of the J12 for noble metal spacers is 
Λexp=(1.15±0.1) nm [2], which is in good agreement with 
the theoretical value (Λth=1.135nm) [4]. The parameters 
of J12 are calculated from the paper [2]. In this 
calculation, the theoretical J12 in magnetic surface, Ni, at 
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Figure 1. 1/J0χp plotted as a function of temperature with square and Gaussian distribution when aver〈σ0〉 =aver〈σ1〉 then obtained H
[18] and when 〈σ0〉 = 〈σ1〉 then take average over the RF’s, next obtained the H.  (δ/J0=0.3 and ∆=δ). 
 

Figure 2. Tcs plotted as a function of tAu for different strengths of RF’s (δ/J0=0.2 , δ/J0=0.8) in BPW model. The dash-dot line is for 
Curie temperature of isolated plane.

Figure 3:Tcs plotted as a function of tAu ( ∆=δ, dt=0.5nm), random fields is defined as δ=(δ1
2+δ2

2)1/2, that δ1=|(∂J12/∂t)dt| (δ2/J0=0.0, 
δ2/J0=0.8 ) in BPW model 
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Figure 4. (Tcs-TcG)/ TcG plotted as a function of thickness of spacer, tAu when 〈σ0〉 = 〈σ1〉.

first antiferromagnetic is 0.4 erg/cm2 [4] and 
experimentally from the effective spin wave parameter is 
around 0.5 erg/cm 2 [2], then A=0.2412, ϕ= -0.30351, 
Λ=5.46364 rad/nm and γ=0.61151/nm.  

For a magnetic layer with thickness t, the Tc of an 
magnetic layer depends on the thickness of the layer 
[28-29]. The Tc of an uncoupled plane for tNi=0.73nm is 
184 K [2]. RF is assumed to arise because of fluctuations 
in J12 due to variations in the spacer thickness. It is better 
to consider the RF as being related to the value of the J12.
Since J12(t) is an oscillatory function of t its derivative 
dJ12/dt is zero just when J12(t) passes through one of its 
maxima or minima, and a maximum as J12(t) passes 
through zero. Hence a small variation in the spacer 
thickness δt will give a vanishingly small effect when 
J12(t) is large but a larger effect where J12(t)→0. Hence 
where J12(t)→0 the Tc is given by the divergence of χp in 
the presence of RF given in terms of the spacer 
fluctuations, δt. 
Tc is shown as a function of thickness of Au, tAu in 
figures 2, when RF’s are constant (δ/J0=0.0, δ/J0=0.8), 
this plot shows that the RF reduces the ordering 
temperature of coupled planes,the more the strength of 
RF the more the reduction of Tc.

When RF’s vary as δ=(δ1
2+δ2

2)1/2, where δ1=|(∂ J12/∂ t)dt|
with dt =0.5 nm and constant RF, δ2/J0= 0.8. In some parts of 
this plot, the TC is less than the Tc of the uncoupled plane 
(dashed line) because of the RF and in some parts it is 
greater because of the J12 and it oscillates with half 
period of J12 (figure 3). More over, the depths of valleys 
are different and are in agreement with the experiment. 

 In figure 4, the relative variance of ordering 
temperature is plotted as a function of spacer thickness. 
This plot shows that the ordering temperature of 
multilayer depends on the distribution of RF at the small 
thickness of spacer. 
 Finally, we have analyzed the RF Ising model in the 
BPW with the square distribution with long correlation 
length and extend the analysis of the previous paper [18]. 
It is shown that the χp of a plane with Gaussian 
distribution of RF decreases more than the square 
distribution. When the correlation length is long 
(〈σ0〉=〈σ1〉), the decreasing in Tc in the square is less than 
Gaussian distribution. Our results show that the Tc
changes as a half period of J12. Without randomness all 
ordering temperatures of coupled planes are more than 
the uncoupled planes. This does not agree with the 
experimental results. By increasing the constant strength 
of RF, all Tc’s go down relative to the uncoupled plane. 
In the cases δ vary as δ=(δ1

2+δ2
2)1/2, where δ1=|(∂ J12/∂ t)d t| and 

δ2/J0= const., in some parts of the thickness of Au, the Tc is less 
than the Tc of uncoupled plane (dash line) and in some 
parts more than it. In experimental results, the depths of 
valleys are different ??. These results show that Tc
depends on the distributions of RF at small thickness of 
the spacer. 
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