
                                                                                                                                                                                                                                                                                                                                                                                             
Iranian Journal of Physics Research, Vol. 21, No. 3, 2021 

 
 

 
 
 
 

A new symmetry for large deviation functions of 
time-integrated dynamical variables 

 
 
 

F H Jafarpour* and P Torkaman 

Physics Department, Bu-Ali Sina University, Hamedan, Iran 
 

E-mail: f.jafarpour@basu.ac.ir 
 
 

(Received 02 April 2021  ;  in final form  25 April 2021) 
 
Abstract 
A new type of symmetry in the large deviation function of a time-integrated current is introduced. This current is different from the 
fluctuating entropy production for which the large deviation function is symmetric in the content of the fluctuation theorem. The 
origin of this symmetry, similar to that of the Gallavotti-Cohen-Evans-Morriss symmetry, is related to time-reversal. The symmetry 
is more unveiled when one performs an appropriate grouping of stochastic trajectories in the space of microscopic configurations. It 
turns out that the characteristic polynomial of the modified generator of this current is not symmetric; however, its minimum 
eigenvalue is symmetric. 
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1. Introduction  
Most of the systems in nature are exposed to a flux of 
matter or energy in the stationary state, and therefore are 
driven out of equilibrium. These non-equilibrium 
systems are usually modeled as Markov jump processes. 
In a Markov jump process the system jumps from one 
configuration to another configuration in the 
configuration space with a certain transition rate. These 
microscopic transition rates do not satisfy the detailed 
balance; hence the system will relax into a non-
equilibrium state where the probability current between 
configurations is non-zero. In order to preserve this 
probability current, the system should be driven by an 
external drive which continuously produces entropy in 
the environment. 

Different fluctuating quantities (or functionals) can 
be defined which depend on the specific sequence of 
transitions or a stochastic trajectory in the configuration 
space. In long-time limit the fluctuation theorems restrict 
the functional form of the probability distribution of this 
fluctuating quantity. Application of the large deviation 
theory reveals that the Gallavotti-Cohen-Evans-Morriss 
(GCEM) symmetry can be considered as a symmetry of 
the large deviation function for the probability 
distribution [1- 4]. 

It was thought that the entropy produced in the 

environment was the only time-integrated current 
(entropic current) for which the fluctuation theorem is 
valid [5-7]. Recent investigations have shown that a 
different time-integrated current (non-entropic current) 
exists which displays a symmetric large deviation 
function [8-10]. Interestingly this symmetry is slightly 
different from the GCEM symmetry. The authors in [8] 
have shown that the height of an interface in a certain 
growth model is a physically relevant example of a non-
entropic time-integrated current with a symmetric large 
deviation function. Necessary condition in order to have 
a non-entropic current with the GCEM symmetry in a 
Markov pure jump process is presented in [10]. In has 
also been shown that this condition is related to 
degeneracies in the set of increments associated with 
fundamental cycles from Schnakenberg network theory 
[11]. On the other hand, the symmetry is originated in 
the time-reversal of the appropriately grouped of 
trajectories [9, 10]. From a mathematical point of view, 
the Gärtner-Ellis theorem states that the large deviation 
function of a time-integrated current is given by the 
Legendre-Fenchel transformation of the minimum 
eigenvalue of a modified generator as- sociated with the 
current under consideration [12]. To the best of our 
knowledge the characteristic polynomials of the 
modified generators associated with the non-entropic 
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currents which have been studied so far are symmetric. 
This means that all the eigenvalues of the characteristic 
polynomials, including the minimum eigenvalue, are 
symmetric. 

A question which has not been answered in the 
related literature is that whether one can define a non-
entropic time-integrated current with a symmetric large 
deviation function without requiring a symmetric 
characteristic polynomial of the modified generator. This 
means that only some of the eigenvalues of the 
characteristic polynomial, including the minimum 
eigenvalue, are symmetric. 

In this paper we propose a simple network of 
microscopic transition rates in which a properly defined 
non-entropic time-integrated current has a symmetric 
large deviation function; however, the characteristic 
polynomial of its modified generator is not symmetric. 
This implies that only the minimum eigenvalue, and not 
all the eigenvalues, is symmetric. Our exact analytical 
results besides the numerical investigations show that 
such a symmetry exists and it is related to the time-
reversal of properly grouped stochastic trajectories in the 
configuration space. Although the example introduced in 
present paper is very restricted; however, it predicts that 
this type of symmetry, first mentioned in [10, 9], exists 
and, at least in our example, it does not belong to the 
time-reversal of some most probable trajectory in the 
configuration space. It also turns out that the structure of 
the configuration space plays an important role. 

This paper is organized as follows. The second 
section is dedicated to a brief review of the basics of the 
large deviation theory. In the third section we discuss the 
symmetries of the large deviation functions studied in 
the literature. We introduce our network and a time-
integrated current and study its symmetries in the fourth 
section. Finally, we explain the origin of the symmetry 
of this non-entropic time-additive dynamical variable 
which will be called the current throughout this paper. 
 
2. Basics of large deviation theory 
It is known that the theory of large deviations can be 
applied to study the properties of both equilibrium and 
non-equilibrium systems [12]. The large deviation theory 
starts with the observation that the dominant term of the 
probability distribution of a random variable 
exponentially decays to zero. In order to briefly review 
this theory, let us first consider a continuous-time 
Markov process with a finite configuration space  in 
which a spontaneous transition from configuration  to 

configuration 's , where , 's s S , takes place with a 

transition rate  's s
w . The time evolution of the 

probability distribution  ,P s t , for the system being in 

 at time t , is given by a master equation 

   , ,  '
'

'
ss

s

d
P s t H P s t

dt
 (1) 

where H is the Markov generator with non-diagonal and 
diagonal elements given by 

 ' 'ss s s
H w  

and 




  '
'

ss s s
s s

H w  

where λ s ssH  is usually called the scape rate from the 

configuration s . Using the quantum Hamiltonian 
formalism, the master equation (1) can be rewritten as 
[13] 

   d
, H ,

dt
P s t P s t   (2) 

A stochastic trajectory ,


M tS  in the configuration space 

is defined as a sequence of M  consecutive jumps 

     0 1 Mt 0 t t   s s s  taking place at 

chronologically ordered times  1 2 Mt , t , , t 0, t   

where M  is a random variable. On the other hand, the 

reversed trajectory ,


M tS  is defined as a sequence of M 

consecutive jumps 

     M M 0t t 1 t 0    s s s  at times 

 M M 1 1t t , t t , , t t 0, t     . A time-integrated 

current   is a functional of the stochastic trajectory 

,


M tS  in S  during the time t . If the current changes its 

value by θ  's s
 whenever a jump from  's s  occurs, 

we have  

   1,
1

θ .
 



    


i i

M

M t s t s t
i

S  (3) 

The increment θ  's s
 is antisymmetric and in the case 

θ 





'

'
'

s s
s s

s s

w
ln

w
,   is just the entropy change. The 

generating function for   can be written as [5, 6] 

0
ˆμ I  Hte e P   (4) 

in which I  is a summation vector  1,1,1,...   and that 

0 P  is the initial probability distribution vector. The 

non-diagonal and diagonal matrix elements of the 

modified generator Ĥ  in (4) are also given by [6] 
μθˆ 


  's s

' 'ss s s
H w e  

and 
ˆ




  '
'

ss s s
s s

H w  

respectively. If S is bounded, in the long-time limit 
t   the generating function (4) can be written as [6] 

 lim 


 te μμ

t
e e   (5) 

In which  e μ  is the minimum eigenvalue of the 

modified generator Ĥ .  
We expect that in the long-time limit, the quotient 
/ t  tends to a constant J . If the probability 

distribution of J  satisfies a large deviation principle, 
then in the long-time limit we can write  
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   ˆ
lim , 


 te J

t
P J t e   (6) 

In which  ê J  is the large deviation function associated 

with the time-integrated current  , which is related to 
deviations of the current from its average value. 
According to the Gärtner-Ellis theorem, the Legendre 
transformation of gives the large deviation function of 

 e μ  gives the large deviation function [12] 

    ˆ max . 
μ

e J e μ Jμ   (7) 

In the next section we discuss the symmetries of this 
large deviation function studied in related literature. 
 
3. Symmetries of large deviation function 
As we mentioned, the fluctuation relations which are 
generally classified as finite-time fluctuation relations 
and infinite-time fluctuation relations, restrict the 
functional form of the large devotion function. Here we 
only consider the infinite-time fluctuation relations. Two 
different types of infinite time fluctuation relations are 
studied in the context of the Markov jump processes: the 
GCEM symmetry and what it is called the GCEM-like 
symmetry. Although these symmetries exert different 
restrictions on the functional form of the large deviation 
function, it has been shown that they have identical 
physical origin which is in fact time-reversal [5- 10]. 

It is known that the GCEM symmetry can always be 
considered as the symmetry of the large deviation 
function for the probability distribution of the entropy 
and entropic currents [5]; however, it seems that the 
existence of the GCEM-like symmetry for the 
probability distribution of the non-entropic currents 
highly depends on the microscopic transition rates 
between different configurations in the configuration 
space [9, 10]. 

Form a mathematical perspective, both the GCEM 
symmetry and the GCEM- like symmetry refer to the 
following relation for the large deviation function of the 
current J 

   ˆ ˆ  e J e J EJ   (8) 

in which E  is a field conjugated to the current J . It has 
been shown that if the fluctuations of the current obey 
the GCEM symmetry then the conjugate field E  can be 
obtained from [6] 

   1ˆ ˆ T
eq eqH μ P H E μ P  (9) 

where T is transpose of a square matrix. eqP  is a 

diagonal matrix with elements which are the equilibrium 
probabilities of the corresponding undriven system 
whose transition rates satisfy detailed balance. One 
should note that (9) also means that all of the 

eigenvalues of  Ĥ μ  and  ˆ H E μ  are identical and 

symmetric including the minimum eigenvalue which 
satisfies 

   . e μ e E μ   (10) 

In other words, the characteristic polynomial of the 

modified generator  Ĥ μ  defined as  

    , det ˆ P μ x H μ x I   (11) 

in which I is the identity matrix, is symmetric i.e., we 
have [14, 15] 

   , , . P μ x P E μ x  (12) 

The entropic currents, for instance the entropy 
production and those time-integrated currents which are 
proportional to the entropy production, satisfy the 
GCEM symmetry and also have a symmetric 
characteristic polynomial. 

The large deviation function of non-entropic currents 
or those time-integrated currents which are not 
proportional to the entropy production satisfy (8) without 
requiring (9) to be satisfied. This type of symmetry is 
known as the GCEM-like symmetry. A physically 
relevant example was first introduced in [8] where the 
height of an interface in a certain growth model was 
defined as a time-integrated non-entropic current with a 
symmetric large deviation function. Later this idea was 
extended to more general Markov jump processes in [9] 
and [10]. In these papers the authors have obtained the 
necessary conditions on the microscopic transition rates 
to have a non-entropic current with a GCEM-like 
symmetry. It turns out that the characteristic polynomial 
of the modified generator for these non-entropic currents 
always satisfy (12). This means that all of the 
eigenvalues of the modified generator, including the 
minimum eigenvalue which plays a crucial role in the 
Gärtner-Ellis theorem, is symmetric. 
 
4. Time reversal as the origin of symmetry 
Let us first consider an entropic time-integrated current 
  whose large deviation function satisfies the GCEM 
symmetry. The Schnakenberg relation indicates that if 
the ratio of the weight of a given cycle   in the network 
of states, defined as a product of transition rates of the 
cycle, to its time-reversal   is given by [11, 14] 

 EKW
e

W



 (13) 

in which K  is the increment of the cycle  , then in the 

long-time limit the ration of the weight of a stochastic 

trajectory ,


M tS  to the weight of its time reversed ,


M tS  

is given by  

,,

,

.
  

   
  



 M tE SM t

M t

W S
e

W S


 (14) 

In the long-time limit this leads us to the fluctuation 
theorem  

 
 

.


EP
e

P



 (15) 

For a non-entropic time-integrated current whose large 
deviation function satisfies a GCEM-like  
symmetry, one has [9, 10] 

{ }{ }

{ }

 EKW
e

W



 (16) 

in which { }  indicates a group of cycles with equal  
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Figure 1. A network of states with periodic boundary conditions. The bold lines show the links where the current A  is defined (see 

inside the text). 
 
increments. A symmetric characteristic polynomial 
requires that all of the cycles with equal increments 
satisfy (16) with a given E  associated with the current. 

Considering a group of trajectories ,{ }

M tS  belonging to 

the same class one finds 

,{ },

,

{ }

{ }

  
   
  



 M tE SM t

M t

W S
e

W S


 (17) 

in which ,{ }  

M tW S  indicates the sum of the weights of 

the trajectories of the group. Similarly, this leads us to 
the fluctuation theorem (15) [8, 9, 10]. 
 We might ask whether we can define a configuration 
space and a non-entropic current with a large deviation 
function which satisfies (8) without requiring (9) and 
(12) to be satisfied. In this case only the minimum 
eigenvalue of the characteristic polynomial of the 
modified generator of this current will be symmetric. In 
the next section we provide a simple finite state space 
with restricted microscopic transition rates and show that 
one can actually define a time-integrated current with 
this type of symmetry. 
 
5. Definition of a new symmetric current 
Let us consider a finite configuration space S  as a graph 
as it is shown in Figure 1. The vertices of this graph are 
the configurations or the states of the system and the 
edges represent the possible transitions between those 
states. As can be seen this network of configurations has 
a periodic structure. The forward (rightward) and 
backward (leftward) transition rates between different  
 

configurations are denoted by w  and w  respectively. 
 The steady-state of a system with this configuration 
space can be easily obtained. Considering the symmetry 
properties of the network, the steady-state probability for 
being in different configurations are given by 

  

  

  

0 2 4

1A 3A 5A

1B 3B 5B

, , 1 2 1 2

, , A2 A1 B1 B2

, , A1 A2 B2 B1

1
,

1
P w w w w ,

Z
1

P w w w w ,
Z

  

  

  

 

 

 

s s s A A B B

s s s

s s s

P w w w w
Z

 (18) 

where the normalization factor Z  is 

  
  
  

1 2 1 2

2 1 1 2

1 2 2 1

3
  

    
    

 
 
 

A A B B

A A B B

A A B B

w w w w
Z w w w w

w w w w
 

Now we define a time-integrated current A  of type (3), 

with θ 1 's s
 and θ 1  's s

 for a forward and a 

backward transition respectively, which goes through the 
following links 

1A 2 3A 4 5A 0     s s s s s s s  

as we have shown in Figure 1 in bold. Using the steady-
state probabilities (18) the long-time average of the 
current /A AJ t  can be calculated 

   1 2 1 2 1 2
1

6 .    A A A A A B BJ w w w w w w
Z

 (20) 

The modified generator of this current in the basis 

0 1A 1B 2 3A 3B 4 5A 5B{ , , , , , , , , }s s s s s s s s s  is given by the 

following square matrix 

  (21)  

in which we have defined   

even A1 B1 A2 B2
A A1 A2
B B1 B2

λ w w w w
λ w w
λ w w

   
 
 

 



  (22) 

We have investigated the characteristic polynomial of 
(21) and found that it is not symmetric in the sense that it 

does not satisfy (12) with any real E . On the other hand, 
it turns out that this characteristic polynomial can be 
written as a product of a symmetric polynomial in  of 
order three and an asymmetric polynomial in  of order 
six. This means that at least three eigenvalues of the 
modified generator (21) are symmetric. Numerical  
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Figure 2. Plot of  J Ae E μ  (filled line) versus  Se μ  (dashed line) for 1 1 2 2 1 14, 1, 3, 2, 3, 1       A A A A B Bw w w w w w  

and 2 1Bw . As can be seen they have different functionalities. 

 

 
Figure 3. A simple network with GCEM-like symmetry (see inside the text). 
 
investigations show that the minimum eigenvalue of (21) 
is symmetric, in the sense of (10) with the following 
conjugate field 

A1 A2

A1 A2

w w1
ln

2 w w

 
  

  AE  (23) 

and also vanishes at 0μ  and  Aμ E . This minimum 

eigenvalue has a very complicated expression; hence it is 
not presented here. Moreover, we emphasis that the 
functional form of the minimum eigenvalue for the 
current  Je μ  differs from that of the entropy 

production  Se μ . 

 In Figure 2 we have plotted  Je AE μ  versus  Se μ  

to show that these minimum eigenvalues do not have the 
same functional form even after rescaling them, hence 
we call AJ  a non-entropic current.  

 We should also note that the average current (20) 
vanishes when A1 A2 A1 A2w w w w   . The external field 

(23) also vanishes when this constraint is fulfilled; 
however, one cannot find a similarity transformation of 
the form (9) with a real conjugate field E . More 
precisely, this means that the system will not be in 
equilibrium when the external field vanishes [6]. 
Because of the symmetry of our network, we could have 
considered an equivalent non-entropic time-integrated 
current B  through the following links 

0 1B 2 3B 4 5B 0.     s s s s s s s  

It can be shown that the large deviation function of this 
current has exactly the same symmetries with the 
conjugate field  

B1 B2

B1 B2

w w1
ln .

2 w w

 
  

  BE  (24) 

We can also calculate the average entropy production in 
the steady-state as a function of AJ  and BJ  as follows 

[5, 14] 

A BS . 
A BJ E J E  (25) 

Note that the large deviation function associated with the 
joint probability distribution function of currents AJ  and 

BJ  defined by 

   tê ,

t
lim P , , t e .


 A BJ J

A BJ J  (26) 

has the GCEM symmetry with respect to the conjugate 
fields AE  and BE  i.e. 

    A Be , e ,ˆ ˆ .    A B A B A BJ J J J E  J E  J  (27) 

In the next section we will explain the origin of this 
symmetry which turns to be the time-reversal. Although 
the new symmetry introduced in this paper is similar to 
the GCEM-like symmetry, in the sense that one should 
properly group the stochastic trajectories, it has a 
different nature. In order to see the differences and 
similarities let us first consider a simpler network of 
states, similar to the one introduced in the previous 
section, as it is shown in Figure 3 with a time-integrated 
current through the following states 
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0 1A 2 3A 0   s s s s s  

This path is shown in bold in Figure 3. The characteristic 
polynomial of this current is symmetric with the same 
conjugate field given in (23). This means that all of the 
eigenvalues of the modified generator for this current are 
symmetric including the minimum one. There are two 
different cycles with increment 0 in this network and 
their weights are given by 

0 1B 2 3B 0

1 2 2
0 B1 B2W W w w ,    s s s s s  

0 3B 2 1B 0

2 2 2
0 B1 B2W w w .W       s s s s s  

Note that these two cycles are time-reversed of each 
other. There are also four different cycles with increment 
2 (and their time-reversed with increment -2) whose 
weights are given by 

0 1A 2 1B 0

2 3A 0 3B 2

0 1A 2 3B 0

0 1B 2 3A 0

1
2 A1 A2 B1 B2
2
2 A1 A2 B1 B2
3
2 A1 A2 B1 B2
4
2 A1 A2 B1 B2

W W w w w w

W W w w w w

W W w w w w

W W

,

.w w w

,

,

w

   

   

   

   

 

 

 

 

 
 

s s s s s

s s s s s

s s s s s

s s s s s

 

Finally, there is a cycle with increment 4 (and its time-
reversed with increment -4 with the weight 

0 1A 2 3A 0

1 2 2
4 A1 A2W W w w .    s s s s s  

Denoting the weight of a time-reversal cycle by W  one 
can immediately see that 

1
4
1
4

W
e

W
 KE  

for 4K  and E  given in (23). By properly grouping 
the cycles with equal increments we also find 

1 2 3 4
2 2 2 2
1 2 3 4
2 2 2 2

W W W W
e

W W W W

  


  
KE  

for 2K  and  
0 0

1 2
0 0

1 2

W W
e

W W





KE  

For 0K . These relations are the origin of the 
symmetry of the characteristic polynomial for the current 
defined above. Grouping of different cycles with equal 
increments indicates that this symmetry is a GCEM-like 
symmetry.  
 Let us now consider the network of states given in 
Figure 1. Comparing this network of states with the one 
given in Figure 2, we see that only the dimensionality of 
the network is changed while its structure is almost 
preserved. As we will see this will result in a completely 
different symmetry for the large deviation function of the 
current. In this network there are two cycles with 
increment 0K  with the following weights 

0 1B 2 3B 4 5B 0

0 5B 4 3B 2 1B 0

1 3 3
0 B1 B2
2 3 3
0 B1 B2

W W w w

W W w w

,

.
     

     

 

   
s s s s s s s

s s s s s s s
 

As in the previous network, these two paths are time-
reversal of each other. For the following cycles 

0 1A 2 3B 4 5B 0

0 1B 2 3A 4 5B 0

1 2 2
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we obtain 2K . There are also three cycles with 
4K  

0 1A 2 3A 4 5B 0
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and a single cycle with 6K  

0 1A 2 3A 4 5A 0

1 3 3
6 A1 A2.W W w w      s s s s s s s  

It can be easily seen that one cannot group the cycles 
with equal increments to satisfy (16). In more detail, it is 
possible to group the cycles with 0K  or 6K  to 
satisfy (16) with the conjugate field given in (23); 
however, it is not possible to group the cycles with 

2K  or 4K . This results in an asymmetric 
characteristic polynomial. This is the reason why we 
emphasize that the nature of the new symmetry 
introduced in this paper is somewhat different from those 
studied before. In what follows we show that the origin 
of the symmetry of the large deviation function for the 
probability distribution function of AJ  is the time-

reversal.  
 Let us first define even 0 2 4{ , , },s s s s  

A 1A 3A 5A { , , }s s s s  and B 1B 3B 5B{ , , }s s s s . Starting 

with a uniform initial distribution we decompose a 
stochastic trajectory with M jumps in the time interval 

 0, t  as a sequence of chronological jumps from evens  

to another evens . In Figure 4 we have plotted a stochastic 

trajectory, which without loss of generality can be 
started from evens  at 0 0t . It can be seen that each 

trajectory returns to evens  after two consecutive jumps. It 

can be realized that eight different events can occur 
when the system jumps from evens  to another evens . The 

weights of these events are given by 
even even A A

even even A A

even even B B

even even B B

even even A A

even even A A

even even B B

ev

λ Δt λ Δt
A1 A1
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λ Δt λ Δt
A1 A2
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B1 B2

λ

e w e w
e w e w
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e w e w
e w e w

,
,

,
,

e

,
,

,

 

 

 

 

 

 

 









 

en even B BΔt λ Δt
B2 B1w e ,w 

 

in which evenΔt , AΔt  and BΔt  are the waiting-times in 

a given evens , As  and SB respectively, before a jump 

occurs. These weights are the building blocks for the 
weight of an arbitrary stochastic trajectory in the sense 
that the weight of a stochastic trajectory can be written 
as a product of different powers of these weights. Now 
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Figure 4. A stochastic trajectory (bold line) can be decomposed into the jumps from evens  to another evens  shown as different 

shaded areas. Time points upward and the horizontal axis is the state of the system. 
 
the weight of a stochastic trajectory can be written as 
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in which the total writing-times in different states are 
given by 

even even A A B Bt Δt , t Δt , t Δt      

Where   even A Bt t t t . On the other hand, one should 

require  

A11 A22 B11 B22

A12 A12 B12 B12
M

2

  

     
n n n n

n n n n
 

in order to fix the total number of jumps M . Using these 
definitions, we have  12 122  A A An n  and 

 12 122  B B Bn n . Let us now consider two different 

stochastic trajectories and their time-reversals where 
their only difference is the value of B . The first 

trajectory with  B  and the weight 
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and the second trajectory with  B  and the weight 
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After some straightforward calculations it can be shown 
that the ratio of the sum of the weights of these two 
trajectories to their time-reversals is given by 

12 12

, ,

, ,

1 2

1 2

, , , ,

, , , ,
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in which the conjugate field AE  is given in (23). 

Multiplying the above expression by a delta function 

 δ A   and summing over all possible trajectories, 

one recovers the fluctuation theorem given in (15). 
 
6. Concluding remarks 
In this paper we have tried to answer the question that 
has been addressed in recent papers on the symmetries of 
the large deviation functions other than the GCEM and 
GCEM-like symmetries. The question is about the 
existence of a situation where the characteristic 
polynomial of the modified generator of a non-entropic 
current is not symmetric but the minimum eigenvalue of 
the modified generator is symmetric. By introducing a 
simple network of microscopic transition rates, we have 
found a non-entropic time-integrated current which has 
the above-mentioned symmetry. We have investigated 
all symmetry aspects of the large deviation function for 
the probability distribution function of this current. We 
have shown that the origin of this symmetry is time-
reversal; however, unlike other GCEM-like symmetries 
studied in the literature, the cycles with equal increments 
cannot be grouped, hence in order to recover the 
fluctuation theorem we have adopted a different 
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approach. It turns out that the existence of this symmetry 
highly depends on the dimensionality and structure of 
the network as a given time-integrated current has 
different symmetries when the network is slightly 
changed. 
 Studying of the symmetries of the large deviation 
functions and the reasons why the large deviation 

principle can be broken is still an active field [16]. There 
are still many open questions. For instance it would be 
very interesting to investigate the necessary conditions 
on microscopic transition rates which impose the same 
symmetry studied in this paper in an arbitrary network of 
states. 
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