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Abstract 
We studied the behavior of the earthquake network using the HEALPix spherical pixelization and square cells methods. In the first 

method, the geographical region is divided into isolatitude rhombic-spherical cells of the same areas using the HEALPix method. In 

the second method, we divided the geographical region into isolatitude equal areas of the square cells. To construct a network, if an 

earthquake happens in a cell, that cell will become a node, and two nodes will be connected with an edge for two successive events. 

The earthquake network is built from Iran’s seismic data from 1900 June 12 to 2015 December 12. We determined the Hurst 

exponent (H = 0.6) due to the rescaled range (R/S) analysis. This value reveals a long temporal correlation in earthquake time-series; 

therefore, the earthquake system is suggested to be self-organized. We showed that among the five major seismotectonic provinces of 

Iran (Alborz-Azarbayejan, Kope Dagh, Central-East Iran, Zagros, and Makran), the earthquake network hubs are located in the 

Zagros region, which is a seismically very active region. According to this result, the Zagros earthquakes affect the surrounding 

earthquakes. The probability distribution function’s power-law behavior with a network built in the pixelization rhombic-spherical 

cells shows scale free behavior’s properties than a network constructed based on the square cells. The mean clustering coefficient’s 

power-law nature with networks built using two methods shows that the earthquake network is scale-free and non-random. We 

concluded that the rhombic-spherical cell pixelization is a more reliable method for building the large geographical region’s 

earthquake network. 
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1. Introduction 
The Iranian territory is one of the most earthquake-prone 

areas in the world that is frequently affected by 

devastating earthquakes that cause the loss of life and 

finances [1, 2, 3, 4]. The high level of seismic activity is 

a consequence of the convergence of Arabian and 

Eurasian plates. The continental-continental collision in 

the west of Iran, along with the Zagros collision and 

subduction in the south of Iran along the Makran 

subduction, results from the convergence [5, 6]. The 

convergence rate measured by GPS varies from 10 

mm/yr in Zagros thrust to 28 mm/yr in the Makran 

subduction zone [7]. Five important seismotectonic 

provinces of Iran are Alborz-Azarbaijan, Kope Dagh, 

Central-East Iran, Zagros, and Makran [8]. The highly 

seismic area Alborz-Azarbayejan in the north and 

northwest of Iran are part of the northern limit of the 

orogenic belt Alpine-Himalayan. The appearance of 

most large-scale earthquakes marks the lowest seismic 

regions of Kope Dagh in the northeast of Iran. The 

intraplate environment of Iran is Central-East, and 

seismic activity is concentrated on seismogenic fault 

zones. The continental-continental collision zone of 

Zagros in the southwest of Iran is a very active region 

with low and moderate-intensity earthquakes. The 

Makran ocean-continental subduction zone in southeast 

of Iran presents a significant difference in the seismic 

behavior between the east and west of Makran [9]. 

Many natural phenomena (such as earthquakes, solar 

flares, electric brain signals) behave like a complex 

system [10, 11]. So far, many methods have been 

introduced to analyze complex systems, such as time 

series analysis, chaos theory, nonlinear algebra, and 

complex networks [12]. Today, complex networks are 

used as an approach to analyzing real-world phenomena 

[13, 14], such as earthquakes (see, e.g. [15]) and solar 

flares (see, e.g. [16, 17]). In recent decades, much 

research has been done on earthquakes using different 
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methods. After publishing two entire articles by Abe and 

Suzuki [18, 19], an important development took place in 

the study of earthquake complex networks. They divided 

the areas between Southern California and Japan into 

small cubes that would be considered as a network 

vertex if an earthquake occurred in either of these cubes. 

Two consecutive earthquakes were also defined as a 

network edge that shows earthquakes’ interaction with 

each other in those cubes. They also found that the 

earthquake’s mainshock can play the role of a hub on the 

network (hubs definition in [20]). This network 

construction method extracted some of the 

characteristics of earthquakes from seismic data and 

showed that the complex network of earthquakes is 

small-world and scale-free [18, 19]. They developed 

their method and extracted valuable information about 

the mainshock and aftershock as well as the scaling 

relation of the earthquake network [21, 22, 23]. Other 

researchers followed this method of constructing a 

complex network earthquake. 

Lotfi and Darooneh studied Iran’s earthquakes using 

the proposed method of constructing a complex 

earthquake network by Abe-Suzuki to find the effect of 

cell size on network feature characteristics [24]. They 

realized the importance of cell size in network 

characteristics and found that all the topological network 

features vary as a resolution power. He et al. made minor 

changes to the Abe-Suzuki method to see the influence 

of space-time on the earthquake’s complex network 

features [25]. They found that the network has still 

shown a small-world and scale-free behavior. 

Chakraborty et al. formed a complex weighted network 

of earthquakes using the Abe-Suzuki method [26]. 

In all the above studies and the like, cubic or square 

divisions have been considered. Given that earthquakes 

are spatio-temporal phenomena, it is essential to 

determine each node’s exact position to build the 

network. The cubic division is suitable for flat surfaces, 

but it makes the area of the cubes different in each 

latitude when used on spherical surfaces. Moreover, the 

network structure will be different from the real world. 

Gorski et al. proposed a method for dividing 

spherical surfaces into rhombuses of an equal area at any 

latitude to analyze the data distributed on spherical 

surfaces [27]. This method, called Hierarchical Equal 

Area isoLatitude Pixelization (HEALPix), was 

developed initially for analyzing cosmological data but 

can be used for data distributed on any surface. 

HEALPix uses a set of advanced algorithms to segment 

spherical surfaces that can divide each spherical surface 

into cells of the same area in different ways. With the 

help of this method, several resolutions can be achieved 

for each spherical surface. 

Another well-known and widely used method for 

studying time series is the visibility graph method, which 

was introduced by Lacasa et al. [28]. With the help of 

this computational tool, a time series can be mapped as a 

graph. This method can be considered a link between the 

three scientific branches of nonlinear dynamics, graph 

theory, and time series analysis. As this tool turns any 

time series into a straightforward mathematical model, 

regardless of all its complexities, it has been used as a 

critical solution in many types of research, from 

financial markets [29] to solar studies [30, 17] and 

earthquake time-series networks [31]. 

Telesca and Lovallo applied the visibility graph 

method in studying Italy’s seismicity between 2005 

April 16 and 2010 December 31[32]. They showed that 

the degree distribution has a power-law behavior, and 

the exponent of the degree distribution obtained between 

3 and 3.25. George used the visibility graph method to 

study Corinth rift seismic catalog data [33]. He showed 

that minimizing the exponent γ of degree distribution 

coincides with the time of a significant event (seismic 

congestion after a large earthquake) in the examined 

seismic catalog. Khoshnevis et al. used the visibility 

graph approach to study earthquakes in a small area in 

northern Iran [34]. In this way, they studied the 

relationship between earthquake magnitude (m) and b 

value from the Gutenberg – Richter law. They 

introduced the visibility graph approach as a suitable 

alternative for conventional methods for seismic study 

and earthquake sequences. 

In this paper, we constructed the earthquake network 

using two different cells, rhombic-spherical cells in the 

first method and the square cells in the second method. 

We combined the HEALPix, Abe-Suzuki, and visibility 

graph techniques to make the network more accurate and 

more realistic in the first method. We used the sequence 

of events introduced in the Abe-Suzuki method to 

construct a visibility graph. Then we mapped the 

location of the visibility graph vertices on the sphere 

surface using the HEALPix algorithm. This process 

helped us get a more realistic view of the seismic 

network mapping on the Earth’s surface. In the second 

method, we used Abe-Suzuki and the visibility graph 

method to construct the network. The parameters of the 

earthquake network of Iran were extracted and studied 

using two methods. We compared the characteristics of 

the network built based on two approaches. 

In Section 2, we present the Earthquake data. Do 

earthquakes form a complex system? is described in 

Section 3. Healpix pixelization algorithm is presented in 

Section 4. In Section 5, we expressed the characteristics 

of a complex network. Earthquake complex network of 

Iran is presented in Section 6, and our results and 

conclusions are presented in Section 7 and Section 8, 

respectively. 

 

2. Earthquake data set 
The seismological data were obtained from the Iranian 

Seismological Center (IRSC), located at the University 

of Tehran’s Institute of Geophysics (http://irsc.ut.ac. ir/). 

IRSC consists of 130 stations throughout Iran, with 80 

stations equipped with broadband seismographs and 49 

stations with short period seismographs and Mashhad’s 

SRO station works with in-well equipment. Only 

earthquakes of magnitude (m) between 2.9 and 8 

(Richter scale) are considered. Occurrence times and 

geographic coordinates for the data are used to build the 

earthquake complex network. The data set used includes 

seisms between 1900 June 12 and 2015 December 12 in  

http://irsc.ut.ac.ir/
http://irsc.ut.ac.ir/
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Figure 1. The epicenter of main shocks occurred in Iran from 1900 to 2015. The topography color bar shows the elevation of the 

selected area. The size of the yellow circles depends on the magnitude of the earthquakes. 

 

 
Figure 2. The Hurst exponent (H = 0.6) in applying R/S analysis on time-series of earthquake data. 

 

the region from E to E and N to N. The 

map of Iran with 20810 earthquakes is shown in figure 1. 

 

3. Do earthquakes form a complex system? 
Long-term memory analysis is a robust technique to 

present the correlation of different times data in an event. 

Hurst exponent as a result of rescaled range analysis 

(R/S) and detrended fluctuation analysis (DFA) is a 

significant parameter of time series characteristics in 

long-term analysis [35, 36, 37, 30, 17]. 

R/S method as a statistical technique divides the 

time-series data with length L into n sub-time series 

( ) with length d, so that L = nd, and for each sub-

time m = 1, ...,d and k = 1,...,n, standard deviation is 

calculated as follow: 

,
 

(1) 

in which  is the mean of sub-series . Each range 

is rescaled by dividing the range of sub-series (Rk) by the 

standard deviation of the same portion (Rk/Sk). The 

average of the rescaled range for all sub-series is 

,
 

(2) 

Weron showd the (R/S)d has an asymptotically behavior 

in terms of n, 

,
 

(3) 

where H is the Hurst exponent given by a linear fitting in 

a log-log scale of (R/S)d versus n [35]. Its different 

ranges give essential information about time-series. 

Depending on the temporal correlation, H varies between 

0 and 1. If 0 < H < 0.5 and 0.5 < H < 1, there is a long-

temporal negative and positive correlation, respectively 

[38, 39, 40, 41]. 

In the earthquake time-series study, we applied a 

threshold and omitted less than 2.9 Richter data. We 

calculate H = 0.6 using R/S analysis on time-series of 

earthquake data (figure 2). This value shows a long 
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Figure 3. A class of spherical rhombic structures on a sphere. Resolution parameter is 1, 2, 4 and 8 from left to right, respectively. 

 

 
Figure 4. The hierarchical division is shown along with the numbering index of the pixels (squares) (Courtesy by Gorski et al. [27]). 

 

temporal correlation in earthquake time-series and 

suggests the system is critically self-organized. So this 

result indicates that the earthquake system has the 

characteristics of a complex system. 

 

4. HEALPix pixelisation algorithm 
HEALPix (the Hierarchical Equal Area isoLatitude 

Pixelization) is a high-precision framework for the rapid 

discretization and analysis of distributed data on a 

sphere. HEALPix includes computational algorithms and 

visual software to analyze the vast amount of 

astronomical data distributed on the celestial sphere. 

Gorski et al. developed this framework to analyze 

cosmic background radiation data, but it is useable for 

any data with a spherical structure [27]. Requirements 

for a spherical pixelization scheme include 1- The 

hierarchical structure of the database 2- Equal areas for 

separate partition elements and 3- distribution of these 

pixels on equal extensions for partitions of the same 

square on the sphere. 

All of these requirements are satisfied by a class with 

rhombic-spherical structures. Figure 3 shows this kind of 

class with a rhombic-spherical structure. It is assumed 

that the hierarchical pixelization divides a sphere surface 

into four curved squares in base resolution. Each square 

is divided into four other squares for higher resolutions, 

and a nested structure is created. The binary indexing is 

used to square numbering, which in higher resolutions, 

each square (pixels) inherits its parent pixel index and 

two new bits to form a new pixel index. Figure 4 shows 

this type of segmentation along with the pixel index. 

Gorski et al. formed an entire class of rhombic-

spherical structures on the sphere, using two parameters 

 and  in a constrained  where  is 

the number of base pixel layers between the north and 

south poles and  is the number of equatorial base pixel 

layers [27]. Therefore, the resulting base pixels are 

divided into polar-north, polar-south, and equatorial 

pixels. Using the constraint , in the 

base division, for  = 3 and = 4, 12 base pixels 

including 4 polar-north, polar-south, and 4 equatorial 

pixels formed on the sphere.  is a constraint in which 

the polar coordinate angle of the lateral vertices of the 

equatorial and polar pixels intersect. Iran is located in the 

first polar-north base pixel. For higher resolution, the 

hierarchical division is performed within these base 

pixels. Figure 5 shows the base pixelization with the 2D 

image. 

Obviously, the total number of pixels in base 

resolution satisfies  = , and for higher 

resolutions  =  , which  is the resolution 

parameter (  = 2n = 1, 2,4,8,...). The area of each grid 

resolution parameter  is . The 

centers of pixels are isolatitude and each latitude named 

with a ring. The ring number in terms of the resolution 

parameters is  = 4  − 1. Figure 6 shows these 

pixels and the rings that the pixel centers located on for 

different resolution parameters. 

 

5. Characteristics of a complex network 
In a complex network, we turn the problem into an 

analyzable structure for studying a phenomenon’s 

properties by defining a mathematical figure called a 

graph. Thus, each event’s location is a node, and the 

relationship between each event and the other is 

considered an edge within a graph. The graphs are 

categorized as directed, undirected, weighted, and 

unweighted graphs. The edges do not have a direction in 

undirected graphs. The weighted graph is a graph in 

which different numbers are related to each edge of the 

graph. If all numbers are equal to one, the graph is the 

unweighted graph. By analyzing the adjacency matrix 

features, a complex network’s topological properties, 

such as local and global scales, were studied [42, 43]. 

The adjacency matrix is one way to represent graphs. For 

a graph G with n nodes and m edges, adjacency matrix A 

is a n × n matrix in which  denoting the number of 

edges jointing node i to node j. For directed graphs, if 
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Figure 5. The base pixels are shown with their two-dimensional 

image (Courtesy by Gorski et al. [27]). 

Figure 6. Hierarchical division on the sphere, shown by moving 

clockwise from top left for resolution 1, 2, 4, and 8, respectively. 

The sign (·) indicates the centers of each cell on fixed latitudes 

(Courtesy by Gorski et al. [27]). 

 

there is a connection pointing from node j to i,  = 1 

and if nodes i and j aren’t connected to each other, = 

0. The adjacency matrix for undirected graphs is 

symmetric  =  and  = 0. For weighted graphs, the 

adjacency matrix components  are equal to . We 

used unweighted and undirected adjacency matrices to 

study the temporal evolution of the earthquake network’s 

parameters. These parameters are the average of local 

clustering coefficients and probability distribution 

function (PDF) for the degree of nodes. By using 

adjacency matrix, we can compute the local clustering 

coefficients ci, mean clustering coefficients as follows: 

, 
(4) 
 

 

(5) 

 

The PDF for degree of nodes is given by: 

 
(6) 

where N, ki,and nk are node number, degree of node i, 

adjacency matrix components, and the number of nodes 

with degree k, respectively. 

 

6. Earthquakes complex network of Iran 
According to the complex spatio-temporal relationships 

between earthquakes, complex network science analyzes 

the complex system’s different features. We used two 

different methods to construct the earthquake network. 

In the first method, we used rhombic spherical cells to 

build the network using the HAELPix method. In the 

HEALPix method, the Earth’s surface is divided into 12 

rhombic-spherical cells in the base resolution, in which 

Iran is located in one of the polar-north cells of this 

pixelization. In the second method, we consider Iran’s 

total area as the base square cell, and then other divisions 

are done on this base cell Figure 7. 

As the resolution increases, the number of cells 

increases in both methods. However, according to the 

base cells in both methods, the number of cells created in 

square cells is more than rhombic-spherical cells. 

According to figure 7, for resolution parameter 8, Iran’s 

share is 24 cells in square and 16 cells in HEALPix 

pixelizations, respectively. 

The HEALPix pixelization divides the Earth’s sphere 

into  pixels with area  for each grid resolution 

parameter , as follow: 

,
 (7) 

,
 

(8) 

which  is the total area of Earth’s surface [27]. 

Figure 6 shows the HEALPix pixelization results for 

four parameters. Hereafter, the ”H” indicates the 

HEALPix method. 

In square pixelization, the relation between the 

number of pixels and grid resolution is as follow: 

 (9) 

in which  = 0,1,2,..., and the pixel’s area is given 

by: 

 
(10) 

that Abs is the base square area for = 0. The ”s” 

indicates square method. 

The earthquake complex network is considered as an 

unweighted and an undirected graph. Using the 

adjacency matrix and according to Abe and Suzuki each 

pixel is considered as a node, and an edge connects two 

cells with successive earthquakes [18]. We ignore loops 

as two successive earthquakes connect in the same cell, 

and multiple edges between the cells are replaced by one 

edge for more simplicity. 

 

7. Results 
The Iranian plateau is part of the Alps and Himalayas’  
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                           0.5       1      1                                                       Longitude 

                 x                                            y 

Figure 7. The view of the map of Iran on HEALPix (left) and square (right) pixelization. The top and bottom panels are for the base 

and eight resolutions, respectively. The HEALPix scheme is on a sphere with a unit radius, and the red rings on HEALPix spheres 

represent the Earth’s equatorial position. 

 
Table 1. The number of nodes and edges are tabulated for six resolution in HEALPix and square methods. 

Resolution HEALPix (node/edge) Square (node/edge) 

128 786/43594 3552/119082 

256 2236/92684 7471/157326 

512 5175/135490 12611/181241 

1024 9697/166480 16690/199292 

2048 14604/190320 18998/210010 

4096 17922/205461 19969/216216 

 

Orogenic Belt, which presents high seismic activity and 

a unique deformation scheme. The movement’s pressure 

converging between the Arabian plate and the Turan 

shield built mountain ranges in Iran [6]. The significant 

tectonic activity, along with the Zagros collision and the 

Makran subduction, results from this convergence [44, 

45, 46]. As we discussed earlier, one way to improve our 

understanding of earthquake dynamics is by spatial and 

temporal analysis of earthquake data. The point of view 

that we have employed to study the seismic phenomenon 

is analyzing a complex network created from seismic 

data. 

In all previous articles, the square cell was used 

many times to divide Iran’s geographical region; 

however, we used the rhombic-spherical cell for the first 

time to divide the geographical region of Iran. In this 

work, we have constructed the earthquake network using 

two methods. The isolatitude rhombic-spherical cells of 

the same areas are used to partition Iran’s geographical 

area in the first method. In the second method, the 

isolatitude square cells with the same areas are used to 

segment the region. In both methods, the cell became a 

node if there was an earthquake within, and for two 

successive earthquakes, two nodes connected. We built 

Iran’s earthquake complex network using the occurrence 

times and geographic coordinates of 20810 events with a 

magnitude of 2.9 < m < 8 in the Richter scale. Table 1 

presents the earthquake network characteristics built 

using two methods. As the resolution increases, the 

number of nodes and edges in each grid increase, but the 

increasing rate in the square method is faster than 

HEALPix. We used the unweighted and undirected 

adjacency matrices to calculate the characteristics of the 

earthquake   network.  Calculating  the   Hurst   exponent 
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Figure 8. PDFs for the degree of nodes for the HEALPix method (left panel) and square method (right panel) for different 

resolutions, a) 128, b) 256, c) 512, d) 1024, e) 2048, and f) 4096. 

 

suggest that earthquakes form a self-organized criticality 

system. 

 

7. 1. Scale-free property of earthquakes network 

The power-law nature of the probability distribution 

function (PDF) of the nodes’ degree was found in studies 

for the world’s specific region using square cells for 

constructing the earthquake network. Abe and Suzuki, 

Pastén et al. showed the scale-free nature of the PDF in 

Japan, California, and Chile [18, 19], [21], [47]. We 

present the PDF of the nodes’ degree for two networks 

built using rhombic-spherical and square cells with the 

resolution varying from 128 to 4096 (figure 8). 

Due to incomplete sampling for finite time-series, the 

real complex networks do not follow an ideal power-law 

distribution function for all network sizes; therefore, we 

use a thresholded power-law distribution [48, 49, 50] in 

the fitting process as follows: 

Pk = (k + k0)−γ, (11) 

where k0 and γ are thresholded value and the power-law 

exponent, respectively. The power law exponent values 

vary from 1.7 to 3.2 and 2.9 to 4.0 for the earthquake 

networks built using rhombic-spherical and square cells, 

respectively. By comparing the results for two networks, 

we see that in the network built using rhombic-spherical 

cells, the thresholded power-law distribution is well 

fitted to the nodes’ degree of the PDF. Still, in the 

network constructed with square cells, the thresholded 

power-law is well fitted for two resolutions, namely 128 

and 256. As the resolution increases, the number of 

divisions increases, and the geographical region’s 

curvature is not seen. So, PDFs are the same for the two 

networks. In smaller  resolution  parameters  such as 128  
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Figure 9. The average local clustering coefficient (<C>) in terms of the degree of nodes for HEALPix method (left panel) and square 

method (right panel) for different resolutions, a) 128, b) 256, c) 512, d) 1024, e) 2048, and f) 4096. 

 

and 256, there is more difference between the power-law 

exponent values for two networks. We can conclude that 

both networks show scale-free behavior, but the network 

built using the rhombic spherical cells has better results 

for all resolution parameters. According to Barabási et 

al. at random networks, the clustering coefficient 

depends on the average degree of nodes [20]. However, 

in the real networks, the average local clustering 

coefficient and degree of nodes have the power-law 

relationship as Ck ∼ k−γ. Figure 9, presents the average 

local clustering coefficient in terms of the degree of 

nodes for two methods of pixelization. Due to the same 

number of clustering coefficients for the different nodes, 

the horizontal and vertical lines are revealed in the 

figure. In this way, analyzing the clustering coefficient in 

terms of the degree of nodes may be impossible. For this 

purpose, using mean values of clustering and degrees of 

nodes in the logarithmic binning intervals are computed 

(Figure 9). We also used the difference between the 

maximum and minimum value of the clustering 

coefficient and the mean value in that box to calculate 

the error bars. In several studies, the mean clustering 

coefficient’s power-law nature indicate the scale-free 

and non-random behavior of the earthquake network [19, 

51, 52, 53]. We constructed an equivalent random 

network with the same grid size and edges corresponding 

to the earthquake network. Figure 10 shows the 

clustering coefficients of the earthquake network and an 

equivalent random network in terms of the network size 

for resolution 128 for two networks built using rhombic 

and square cells. We used equations (4) and (6) for the 

clustering coefficient of the earthquakes and random 

network, respectively. This result shows that the 

earthquake network is a non-random network. 

 

7. 2. Hubs in the earthquake network of Iran 

We obtained a geospatial image of two networks 

constructed with two pixelization methods as shown in 

figure 11 (created with Gephi, https://gephi.org). We see 

that in the geospatial picture of the earthquake network 

constructed with rhombic spherical cells, the high 

connectivity nodes (hubs) are located in the Zagros 

https://gephi.org/
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Figure 10. Comparing the clustering coefficient of the earthquakes complex network with equivalent random network for 

HEALPix(left), square (right) and for resolution parameter 128 is presented. 

 

 
Figure 11. Iran epicenter network’s geospatial image: the earthquake network constructed using rhombic spherical cells (right) and 

square cells (left) with resolution parameter 128. Seismic data taken from 1900 to 2015 and 2.9 < m < 8. Larger and reddish nodes 

have a higher number of connections. Most of the hubs are located in the Zagros region. 

 

region. Therefore, earthquakes in the Zagros region 

affect surrounding earthquakes. This region is a very 

active seismic zone and the most earthquake-prone area 

in Iran [9]. However, the same results were not observed 

in the network built using square cells. In the network 

built using square cells with increasing the resolution, 

the number of nodes increases rapidly than the network 

built using rhombic spherical cells. 

The geographical region will segment with smaller 

cells with increasing the nodes, so this network has 

additional and unnecessary nodes and edges. In this case, 

nodes lose their hub nature. 

8. Conclusions 
We built the Iran earthquake network using two 

pixelization methods and compared the network’s 

parameters’ behavior. To construct the earthquake 

network, we used the occurrence times and geographic 

coordinates of 20810 events between 1900 June 12 and 

2015 December 12. The undirected and unweighted 

adjacency matrix is used to determine the PDF of the 

nodes’ degree and clustering coefficient of the network. 

The Hurst exponent value (H = 0.6) for the Iran 

earthquake time series suggests that the earthquake 
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system is a self-organized criticality with a long 

temporal correlation. 

The power-law behavior of the PDF of the nodes’ 

degree for two networks shows the network is scale-free. 

However, in the network constructed with rhombic-

spherical cells, the thresholded power-law is fitted to the 

PDF better than the network built using square cells. The 

power-law nature of the average local clustering 

coefficient presents the network is non-random and 

scale-free. We found earthquake network hubs are 

located in the Zagros region in the network built with 

rhombic-spherical cells. Zagros is among the youngest 

and most active continental collision zones in southwest 

Iran [54].  Comparing the results for both constructed 

networks, we concluded that the network made with the 

rhombic-spherical cells has better outcomes for network 

characteristics. The first reason is related to the number 

of nodes and edges of the networks. By increasing the 

resolution, the number of nodes increases, so several 

earthquakes on one cell are divided between several cells 

and the number of connections increases. As a result, 

when the geographical region is divided into tiny cells, 

the nodes will lose their ability to become hubs. The 

second reason is the power-law behavior of the PDF of 

the nodes’ degree. 

There is better fitting between the thresholded power-

law and the PDF in the network made with rhombic-

spherical cells for all resolutions. But in the network 

built using square cells just for two resolutions, there is 

good fitting. The third reason is the position of hubs. In 

the network built using rhombic-spherical cells, hubs are 

located in the Zagros region, an essential region in 

seismic studies. This paper’s important outcome is that 

the rhombic-spherical cell pixelization is a more reliable 

method for building the large geographical area’s 

earthquake network. 
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