The study of $B_{s}^{\circ} \rightarrow \eta_{c} \phi$ decay with the calculation of its branching ratio

N Bakhshi, A Abdi Saray, and B Mohammadi
Department of Physics, Faculty of Science, Urmia University, Urmia, Iran

E-mail: ak.abdi@urmia.ac.ir
(Received 28 December 2020 ; in final form 09 July 2021)

Abstract

In this paper, the decay of the B_{s}° meson into two vector mesons η_{c} and ϕ is investigated.The first observation of the decay was reported in 2017 by LHCb collaboration, they have obtained the value of $\mathrm{B}\left(B_{s}^{\circ} \rightarrow \eta_{c} \phi\right)=(5.01 \pm 053 \pm 0.27 \pm$ $0.06) \times 10^{-4}$. In this study, the Feynman diagram of $B_{s}^{\circ} \rightarrow \eta_{c} \phi$ decay is drawn based on the standard model. In particular this diagram shows that the decay consists of tree-exchange internal w-emission graph and penguin- suppressed graph. The coefficients of a_{2}, a_{3}, a_{5} and a_{7} are calculated in the NLO scale. The branching ratio is calculated using the QCD factorization method, numerical values in the NLO (at m_{b} scale) scheme is 5.33×10^{-4}, for which are in good agreement with the experimental results. The more calculations accuracy increases, the b quark mass scales come down corresponding to that. The best answer close to the experimental value is in NLO scheme at m_{b} scale of QCDF approach.

keywords: B meson decay, factorization method, Feynman diagram, form factor, decay rate, branching ratio

