Iranian Journal of Physics Research, Vol. 23, No. 4, 2023

Comparison of direct DNA damage by protons and oxygen, carbon, and helium ions using Geant4-DNA code

A Azizi Ganjgah and P Taherparvar*
Department of Physics, Faculty of Science, University of Guilan, Postal Code 41938-33697, Guilan, Iran

E-mail: p.taherparvar@guilan.ac.ir
(Received 11 September 2023 ; in final form 14 December 2023)

Abstract

Ionizing radiations can directly affect cells by inducing DNA breaks. This impact includes single-stranded and double-stranded failures; which may cause cell death and mitotic failure. In the present study, with the help of an atomic DNA model built in the Geant4-DNA code and its initial validation, direct DNA damage by interaction with carbon ions $114 / \mathrm{u} 2 \mathrm{MeV}, 134 / 21 \mathrm{MeV} / \mathrm{u}$ oxygen, $62 / 83 \mathrm{MeV} / \mathrm{u}$ helium and radiation 62 MeV protons have been investigated. For this purpose, after the initial validation, the results of single-stranded, double-stranded fractures and double-stranded fracture efficiency at depths of 5 to 30.7 mm were evaluated for the mentioned ions. The ratio of single strand breaks for oxygen ions at 5 mm (and the location of the Bragg peak: 30.7 mm), $1.85(1.55), 4.19(9.42)$, and 10.6 , respectively. (22/24) is more than carbon ions, helium and proton rays. On the other hand; The two-strand break at a depth of 5 mm for oxygen, carbon, helium and proton ions is equal to $0.09,0.05,0.01$ and 0.005 respectively. These values were calculated as $2.09,1.34,0.22$, and 0.03 at the place of the Bragg peak (with a significant increase). The results show heavy ions behave much more effective than light ions and protons in terms of biological effects (in the form of single- and doublestrand breaks), therefore, they are more effective options for inhibiting or controlling cancer cells.

Keywords: double-strand break, single-strand break, Geant4-DNA, DNA damage

