Author
Abstract
The existing theoretical approaches have been unable to confront the large corpus of outstanding data on the cuprate superconductor in a persuasive and unified manner. There is a general opinion now growing that these theories miss some essential points. We propose one based on multichannel Kondo effect that is physically justifiable and confronts the data adequately. In addition to earlier data, the definitive proof of involvement of this effect has been now provided by the numerical agreement of the characteristic Kondo temperatures with the fluctuation frequencies at which Eliashberg function peaks. It is, therefore, suggested that the theory of multichannel Kondo effect be accepted as the correct theory of underdoped cuprate.
Keywords
1. Y Ando et al., Phys. Rev. Lett. 75 (1995) 4662.
2. S Ono et al., Phys. Rev. Lett. 85 (2000) 638.
3. X G Luo et al., J. Superconducting Science & Technology 18 (2005) 234.
4. F Rullier-Albenque et al., Europhys. Lett. 81 (2008) 37008.
5. H Alloul et al., Phys. Rev. Lett. 63 (1989) 1700.
6. M Takigawa et al., Phys. Rev. B 43 (1991) 247.
7. M C Boyer et al., Nature Phys. 3 (2007) 802.
8. Y Lubashevsky et al., Phys. Rev. Lett. 106 (2011) 047002.
9. Y H Liu et al., Phys. Rev. Lett. 101 (2008) 137003.
10. J P Carbotte et al., Nature 401 (1999) 354.
11. D Manske et al., Phys. Rev. Lett. 87 (2001) 177005.
12. A N Pasupathy et al., Science 320 (2008) 196.
13. M Fabrizio et al., Phys. Rev. Lett. 74 (1995) 4503.
14. M Fabrizio et al., J. Superconductivity 9 (1996) 425.
15. P Nozieres and A Blandin, J. Physique Fr. 41 (1980) 193.
16. W Zhang et al., Phys. Rev. B 85 (2012) 064514.
17. J M Bok et al., Phys. Rev. B 81 (2010) 174516.
18. J H Yuan et al., Phys. Rev. B 82 (2011) 104521.
19. H Y Choi et al., Front. Phys. (China) 6, 4
(2011) 440.
20. C M Varma, “Notes on RVB-Vanila by Anderson et al, in Proc. NATO Advanced Research Workshop on new challenges in superconductivity: experimental advances and emerging theories”, Springer 183 (2005).
21. Y He and C MVarma, Phys. Rev. Lett. 106 (2011) 14700.
22. D C Johnston, “Normal state magnetic properties of single-layer cuprate high-temperature superconductors and related materials”, J. Buschow K. H. (Ed.), “Handbook of magnetic materials”, Elsevier, Amsterdam, 10 (1997) 1-237.
23. C Pepin et al., Phys. Rev. Lett. 98 (2007) 206401.
24. J W Loram et al., Phys. Rev. Lett. 71 (1993) 1740.
25. C Niedermayer et al., Phys. Rev. Lett. 80 (1998) 3843.
26. Ph Nozieres, Eur. Phys. J. B 6 (1998) 447.
27. S Sebastian et al., Phys. Rev. B 81 (2011) 140505.
28. V J.Emery and S Kivelson, Phys. Rev. B 46 (1992) 10812.
29. A M Sengupta and A Georges, Phys. Rev. B 49 (1994) 10020.
30. B Batlogg and V J Emery, Nature 382 (1996) 20.
31. H Fukuyama and H Kohno, “Theory of high Tc cuprates: extended tJ model”, Proceedings of the 21st.Int’l Conference on Low Temperature Physics, Prague, (1996).
32. E Pavarini, Phys. Rev. Lett. 87 (2001) 047003.
33. L Alff et al., Nature 422 (2003) 698.
34. W S Lee et al., Nature 450 (2007) 81.
35. J Haase, D Rybicki, and C P Slitcher et al., Arxiv 1110.6016.
36. Hwang
37. M A Mojumder, Physica C 466 (2007) 148.
38. D van der Marel et al., Nature 425 (2003) 271.
39. M Schlottman, Phys. Rev. Lett. 84 (2000) 1559.
40. M A Mojumder, J superconductivity & novel magnetism 23 (2010) 285.
41. C M Varma, L Zhu, Phys. Rev. Lett. 98 (2007) 177004.
42. K McElroy et al., Nature 422 (2003) 592.
43. J Lee et al., Science 325 (2009) 099.
44. C M Varma et al., Phys. Rep. 361 (2002) 267.
45. Y J Uemura et al., Phys. Rev. Lett. 66 (1991) 2665.
46. Y He and C M Varma, Arxiv: 1201.5828.
47. P Bourges, Y Sidis and, C R Phys. (Fr.), 12 (2011) 461.
48. E van Heumen et al., J. Phys. Conf. Ser. 150 (2009) 052278.
49. J Bäckstrőm et al., Phys. Rev. B 70 (2004) 174502.
50. J Hwang et al., Phys. Rev. Lett. 98 (2007) 207002.
51. E Elles et al., Phys. Rev. B 79 (2009) 100505.
52. M A Mojumder, Solid St. Commun., 138 (2006) 371.
53. W Meevasana et al., Phys. Rev. B 75 (2007) 174506.
54. W Meevasana et al., Phys. Rev. B 77 (2008) 10450.
55. A Abrikosov et al., “Methods of quantum field theory in statistical Physics”, Ed., Silverman R A, Dover (1963).
56. R Khasanov et al., J. Phys. Cond. matter 16 (2004) S4430.
57. R Khasanov et al., Phys. Rev. B 74 (2006) 064504.
58. C Grimaldi et al., Europhys. Letters, 42 (1998) 667.
59. T Timusk and B Statt, Rep. Prog. Phys. 62 (1999) 61.
60. M R Norman et al., Adv. Phys. 54 (2005) 715.
61. M Hashimoto et al., Nature Physics 6 (2009) 414.
62. O Fischer et al., Rev. Mod. Phys. 79 (2007) 353.
63. A Bangura et al., Phys. Rev. Lett. 100 (2008) 047001.
64. C Jaudet et al., Arxiv 1001.1508.
65. D LeBoeuf et al., Nature 450 (2007) 533.
66. D Le Boeuf et al., Phys. Rev. B 83 (2011) 054506.
67. M R Norman et al., Nature 392 (1998) 157.
68. M A Mojumder, J. Superconductivity & Novel Magnetism 22 (2010) 417.
69. J M Harris et al., Phys. Rev. Lett. 75 (1995) 1301.
70. M A Mojumder, Physica B 392 (2007) 361.
71. M A Mojumder, Int. J. Mod. Phys. 13 (1999) 3205.
72. M A Mojumder, J. Superconductivity & Novel Magnetism 22 (2010) 817.
73. H A Mook, F Dogan, Nature 401 (1999) 145.
74. H A Mook et al., Phys. Rev. Lett. 70 (1993) 3490.
75. M R Trunin et al., Phys. Rev. Lett. 92 (2004) 067006.
76. C Homes et al., Phys. Rev. Lett. 71 (1993) 1645.
77. S Burdin et al., Phys. Rev. Lett. 85 (2000) 104.
78. J E Hoffman et al., Science 295 (2002) 466.
79. M Vershinin et al., Science 303 (2004) 1995.
80. M A Mojumder, Europhys. Lett. 62 (2003) 575.
81. R Sollie, P Schlottman, J. App. Phys. 70 (1991) 5803.
82. S H Pan et al., Nature 403 (2000) 746.