Authors
Abstract
In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustrating second neighbor coupling ( k
Keywords
1. M E Fisher and W Selke, Phys. Rev. Lett. 44 (1980) 1502.
2. W Selke, Phys. Rep. 170 (1988) 213.
3. W Selke, “Phase Transitions and Critical Phenomena”, Academic, New York (1992).
4. S Suzuki, J Inoue, and B K Chakrabarti, “Quantum phases and transitions in transverse Ising models”, Springer (2013).
5. I Peschel and V J Emery, Z. Phys. B 43 (1981) 241.
6. M Beccaria, M Campostrini, and A Feo, Phys. Rev. B 73 (2006) 052402.
7. A Dutta, U Divakaran, D Sen, B K. Chakrabarti, T F Rosenbaum, and G Aeppli, arXiv: 1012.0653
8. K Chandra and S Dasgupta, Phys. Rev. E 75 (2007) 021105.
9. R R P Singh, M P Gelfand, and D A Huse, Physical Review Letters 61, 21 (1988) 2484.
10. M Gelfand, and R R P Singh, Advances in Physics 49, 1 (2000) 93.
11. J Oitmaa, C J Hamer, and W H Zheng, “Series expansion methods for strongly interacting lattice models”, School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia (2006).
12. G A Baker, “Quantitative theory of critical phenomena”. Academic Press (1990).
13. C Domb, “Phase transitions and critical phenomena”, Academic Press (1974).