Authors
Abstract
We want to study thermal corrections on the speed of light at low temperature considering temperature dependence of photon vacuum polarization tensor at two-loop level in the standard QED. It is found that the heat bath behaves as a dispersive medium for the propagation of light and reduces its speed proportional to the second order of temperature. Similarities and differences, in light of already known calculations which are based on Euler-Heisenberg Lagrangian and/or those using temperature dependent electromagnetic properties of the medium are discussed.
Keywords
1. P W Milonni, “The quantum vacuum: an introduction to quantum electrodynamic”, Academic Press (1993).
2. F Mandl and G Shaw, “Quantum field theory”, Wiley (2010).
3. C Itzykson and J Zuber, “Quantum field theory”, McGraw-Hill (1987).
4. T Matsubara, Progress of theoretical physics 14 (1955) 351; A. Das, “Finite temperature field theory”, World Scientific (1997).
5. J F Donoghue, B R Holstein and R W Robinett, Ann. Phys.164 (1985) 233; J F Donoghue and B R Holstein, Phys. Rev. D 28 (1983) 340.
6. K Ahmed and Samina S Masood, Ann. Phys. 207 (1991) 460.
7. K Ahmed and S Saleem, Phys. Rev. D 35 (1987) 1861.
8. W Heisenberg and H Euler, Z. Phys. 98. (1936) 714; H Euler, Ann. Phys. 26 (1936) 398.
9. S S Masood and M Q Haseeb, Int. J. Mod. Phys. A 23 (2008) 4709.
10. W Greiner and J Reinhart, “Quantum Electrodynamics” Springer, New York (2003).
11. M Haseeb, S S Masood, hep-th/1110.3447.
12. X Kong and F Ravandal, Nucl. Phys. B 526 (1998) 627; F Ravandal, hep-ph/9709220, “Strong and Electroweak Matter 97”, Eger, Hungary (1997).
13. A Weldon, Phys. Rev. D 26 (1982) 1394; R Tarrach, Phys. Let. B 133 (1983) 259.
14. R M Woloshyn, Phys. Rev. D 27 (1983) 1393.