Authors

Abstract

This paper proposes a suitable method for increasing effective surface area of electrodeposited WO3 thin films. This is done because effective surface area improves optical and electrochromic properties in smart windows. Therefore, we investigated precursor aging atperoxytungstate precursor (0, 24, 48 and 72 h). Experiments showed by increasing aging time of the precursor solution, larger aggregates were formed. Their morphology, optical and cyclic voltammogram characterization showed that increasing aging time improves optical and electrochromic properties of WO3 thin films in 1M LiClO4-PC electrolyte. The WO3 films with aging time of 72 h exhibited a noticeable EC performance with variation of transmittance up to 72% at 633nm. The result indicated that using two electrochromic materials with complementary properties could improve the function of the device

Keywords

1. C M Lampert, Materials Today 7 (2004) 28.
2. S K Deb, “Handbook of Inorganic Electrochromic Materials”, Appl. Opt. Suppl. 3 (1969) 192.
3. P M S Monk, S P Akhtar, J Boutevin, and J R Duffield, Electrochima Acta 46 (2001) 2091.
4. C G Granqvist, P C Lansaker, N R Mlyuka, G A Niklasson, and E Avendano, Solar Energy Materials and Solar Cells 93 ( 2009) 2032.
5. J N Yao, P Chen, and A Fujishima, J. Electroanal. Chem. 406 (1996) 223.
6. J Vondrák, M Sedlaríková, and T Hodal, Electrochimica Acta 44 (1999) 3067.
7. F F Ferreira, M H Tabacniks, M C A Fantini, I C Faria, and A Gorenstein, Solid State Ionics 86–88 (1996) 971.
8. J Scarminio, A Urbano, and B J Gardes, and Gorenstein, J. Mater. Sci. Letters 562 (1992) 11.
9. S K Deb, Solar Energy Materials and Solar Cells 92 ( 2008) 245.
10. http://www.sage4ec.com (Date accessed: 10 Feb 2012).
11. H Eshghi, A Z Biaram, and M Adelifard, Modern Physics Letters B 25 (2011) 1473.
12. M Giannouli and G Leftheriotis, Solar Energy Materials and Solar Cell 95 (2011) 1932.
13. G. Leftheriotis and P Yianoulis, Solid State Ionics 179 (2008) 2192.
14. X H Xia, J P Tu, J Zhang, X L Wang, W K Zhang, and H Huang, Solar Energy Material and Solar Cells 92 (2008) 628.
15. H Huang, J Tian, W K Zhang, Y P Gan, X Y Tao, X H Xia, and J P Tu, Electrochimica Acta 56 (2011) 4281.
16. C G Granqvist, “Handbook of Inorganic Electrochromic Materials”, Amsterdam, Elsevier (2002).
17. A Georg and A Georg, Solar Energy Materials and Solar Cells 93 ( 2009) 1329.
18. J Nagai, T Kamimori, and M Mizuhashi, “Transmissive Electrochromic Device”, Proc. SPIE, 502 (1984) 59.
19. A Nemetz, A Temmink, K Bange, S C De Torresi, C Gabrielli, R Torresi, and A Hugot-Le Goff, Solar Energy Mterials and Solar Cells 25 (1992) 93.
20. D S Dalavi, M J Suryavanshi, D S Patil, S S Mali, A V Moholkar, S S Kalagi, S A Vanalkar, S R Kang, J H Kim, and P S Patil, Applied Surfaced Science 257 (2011) 2647.
21. D Calloway, Chemical Education 74, 7 (1997) 744.
22. J H Choy, Y I Kim, B W Kim, N G Park, G Campet, and J D Grenier, Chemistry of Materials 12 (2000) 2950.
23. P V Ashrit, Thin Solid Films 385 (2001) 81.
24. T Pauporte, Electrochemical Society 149 (2002) C539.
25. T Brezesinki, D F Rohlfing, S Sallard, M Antonietti, and B M Smarsly, Small 2, 10 (2006) 1203.
26. W Cheng and E Baudrin, B Dunn, and J I Zink, Materials Chemistry 11 (2001) 92.
27. S Badilescu, P V Ashrit, Solid State Ionics 158 (2003) 187.

تحت نظارت وف ایرانی