Authors

Abstract

Stability of synchronous state is a fundamental problem in synchronization. We study Matrix Measure as an approach for investigating of stability of synchronous states of chaotic maps on complex networks. Matrix Measure is a measure which depends on network structure. Using this measure and comparing with synchronization threshold which depends on the function of the map, show us how the synchronous state can be stabilized. We use these methods for networks with different parameters and topologies. Our numerical calculation shows that synchronous states on more dense networks are more stable. Network’s size is another effective parameter that order of value and extent of stability interval is determined by network’s size. Our results also show that among dense networks, Random and Scale-Free networks have larger stability interval of coupling strength. Finally, we use Error Function to test a prediction of Matrix Measure approach.

Keywords

1. R Albert and A L Barabasi, Rev. Mod. Phys. 74 (2002) 47.
2. S Boccaletti, V Latora, Y Moreno, M Chavez, and D U Hwang, Phys. Rep. 424 (2006) 175.
3. A Pikovsky, M Rosemblum, and J Kurths, “Synchronization”, Cambridge University Press, Cambridge, England (2001).
4. S H Strogatz, “Sync: How Order Emerges From Chaos In the Universe, Nature, and Daily Life”, Hyperion, New York (2003).
5. X Li, Y Y Jin and G chen, Phys. A 328 (2003) 387.
6. S H Strogatz and I Stewart, American Scientific. 269 (1993) 102.
7. I Kanter, W Kinzel, and E Kanter, Europhys. Lett. 57 (2002) 141.
8. G Chen, J Zhou and Z Liu, Int. J. Bifurcation Chaos. 14 (2004) 2229.
9. J Cao, P Li, and W Wang, Phys. Lett. A 353 (2006) 318.
10. k Wang, Z Teng, H Jiang, Phys. A 387 (2008) 631.
11. J H Park and O M Kwon, Mod. Phys. Lett. B 23 (2009) 1743.
12. C J Cheng, T L Liao, J J Yan, and C C Hwang, Phys. Lett. A 338 (2005) 28.
13. L M Pecora and T L Carroll, Phys. Rev. Lett. 80 (1998) 2109.
14. X F Wang and G Chen, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 49 (2002) 54.
15. V N Belykh, I V Belykh, and M Hasler, Phys. D 195 (2004) 188.
16. R E Amritkar, S Jalan, and C K Hu, Phys. Rev. E 72 (2005) 016212.
17. R He and P G Vaidya, Phys. Rev. E 57 (1998) 1532.
18. W L Lu and T P Chen, Phys. D 198 (2004) 148.
19. W He and J Cao, Chaos 19 (2009)013118.
20. M Chen, IEEE Trans. Circuits Syst., II: Analog Digital Signal Process 53 (2006) 1185.
21. M Chen, Phys. Rev. E 76 (2007) 016104.
22. P Li, M Chen, Y Wu, and J Kurths, Phys. Rev. E 79 (2009) 067102.
23. S H Strogatz, Nature 410 (2001) 268.
24. D J Watts, S H Strogatz. Nature. 393 (1998) 440.
25. M E J Newman, D J Watts. Phys. Lett. A 263 (1999) 341.
26. P Erdos and A Renyi, Publ. Math. Debrecen. 6 (1959) 290.
27. A L Barabasi and R Albert, Science 286 (1999) 509.
28. R A Horn and C R Johnson, “Matrix Analysis”, Cambridge University Press, Cambridge (1985).
29. S C Mandrubia, A S Mikhailov, and D H Zanette, “Emergence of Dynamical Order”, World Scientific (2004).

ارتقاء امنیت وب با وف ایرانی