Authors
Abstract
In this paper, the long-range Van Der Walls dispersion force correction (vdW-DF) for a combined system consisting of an Ag-chain adsorbed on a monolayer of graphene is studied. Calculations are based on density functional theory (DFT) performed by using various LDA, PBE and BLYP approximations. Since Ag chain is weakly adsorbed on graphene sheet, the Van Der Waals contribution to the total adsorption energy cannot be ignored. When applying this correction, the structural and electronic properties of the combined system such as adsorption energy, adsorption distance, and the Fermi level shift with respect to the Dirac point are significantly affected. The weak hybridization of the electronic states of silver and carbon at the interface gives rise to a small band gap opening at the Dirac point.
Keywords
2. S Latil, V Meunier, and L Henrard, Physical Review B, 76 (2007) 201402.
3. A Mattausch, O Pankratov, and Ab Initio, Physical Review Letters, 99 (2007) 076802.
4. A K Geim and K S Novoselov, Nat. Mater, 6 (2007) 183.
5. K S Novoselov, A K Geim, S V Morozov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos, and A A Firsov, Nature, 438 (2005) 19.
6. B Uchoa, C Y Lin, and A H Castro Neto, Physical Review B, 77 (2008) 035420.
7. A T N Diaye, S Bleikamp, P J Feibelman, and T Michely, Physical Review Letters, 97 (2006) 215501.
8. G Giovannetti, P A Khomyakov, G Brocks, V M Karpan, J van den Brink, and P J Kelly, Physical Review Letters, 101 (2008) 026803.
9. H Rydberg, M Dion, N Jacobson, E Schröder, P Hyldgaard, S I Simak, D C Langreth, and B I Lundqvist, Physical Review Letters, 91 (2003) 126402.
10. J Bamidele, J Brndiar, A Gulans, L Kantorovich, and I Štich, Journal of Chemical Theory and Computation, 9 (2013) 5578.
11. G Román-Pérez, and J M Soler, Physical Review Letters, 103 (2009) 096102.
12. M Vanin, J J Mortensen, A K Kelkkanen, J M Garcia-Lastra, K S Thygesen, and K W Jacobsen, Physical Review B, 81 (2010) 081408.
13. V Barone, M Casarin, D Forrer, M Pavone, M Sambi, A Vittadini, Journal of Computational Chemistry, 30 (2009) 934.
14. S Grimme, Journal of Computational Chemistry, 25 (2004) 1463.
15. P Giannozzi, et al., Journal of Physics: Condensed Matter, 21 (2009) 395502.
16. J P Perdew, and A Zunger, Physical Review B, 23 (1981) 5048.
17. J P Perdew, K Burke, and M Ernzerhof, Physical Review Letters, 77 (1996) 3865.
18. A D Becke, Physical Review A, 38 (1988) 3098.
19. C Lee, W Yang, and R G Parr, Physical Review B, 37 (1988) 785.
20. H J Monkhorst and J D Pack, Physical Review B, 13 (1976) 5188.
21. S Grimme, Journal of Computational Chemistry, 27 (2006) 1787.
22. V Caciuc, N Atodiresei, M Callsen, P Lazić, and S Blügel, Journal of Physics: Condensed Matter, 24 (2012) 424214.
23. A M Shikin, V K Adamchuk, and K H Rieder, Physics of the Solid State, 51 (2009) 2390.
24. L Hu, X Hu, X Wu, C Du, Y Dai, and J Deng, Physica B: Condensed Matter, 405 (2010) 3337.
25. Q Ran, M Gao, X Guan, Y Wang, and Z Yu, Applied Physics Letters, 94 (2009) 103511.
26. A Varykhalov, M R Scholz, T K Kim, and O Rader, Physical Review B, 82 (2010) 121101.
27. K T Chan, J B Neaton, and M L Cohen, Physical Review B, 77 (2008) 235430.
28. P A Khomyakov, G Giovannetti P C Rusu, G Brocks, J van den Brink, and P J Kelly, Physical Review B, 79 (2009) 195425.
29. F Costanzo, P L Silvestrelli, and F Ancilotto, Journal of Chemical Theory and Computation, 8 (2012) 1288.