Authors
Abstract
Gravitational waves are the last unconfirmed prediction of the general relativity. These waves are tiny fluctuations in world frame that dessipate energy throghout space. The gravitatinal waves spectra of fluctuations can be originated from the non-linear effects during different cosmic evolution periods, especially from initially non-linear and excited vacuum state in the very early universe. Based on this fact, in this paper introducing "excited-de Sitter vacuum" as a fundamental mode, the obtained power spectrum has been investigated. Corrected spectra obtained from Hilbert and Krein spaces are compared.The renormalization approach presented in this work, preserves the curved space-time symmetry and stimulates us to use excited de Sitter mode. Also, the corrections obtained from the non-linear mode includes the second-order corrections and in the linear limit accords with the results from conventional methods.
Keywords
2. V F Mukhanov, H A Feldman, and R H Brandenberger, Phys.Rept. 215 (1992) 203.
3. N D Birrell and P C Davies, “Quantum Field Theory in Curved Space-Time”, Cambridge University Press (1982).
4. U H Danielsson, J. High. Energy. Phys. 0207, (2002) 040.
5. U H Danielsson, J. High. Energy. Phys. 0212, (2002) 025.
6. K Goldstein and D A Lowe, Nucl. Phys. B 669 (2003) 325.
7. N Deruelle and V F Mukhanov, Phys. Rev. D 52 (1995) 5549.
8. D Baumann, hep-th/0907.5424v1.
9. K Goldstein and D A Lowe, Phys. Rev. D 67 (2003) 063502.
10. G L Alberghi, R Casadio and A Tronconi, Phys. Lett. B 579 (2004) 1.
11. L Bergstrom and U H Danielsson, J. High Energy Phys. 0212 (2002) 038.
12. N Kaloper et al., J. High Energy Phys. 0211 (2002) 037.
13. R Easther et al., Phys. Rev. D 66 (2002) 023518.
14. J C Niemeyer et al., Phys. Rev. D 66 (2002) 083510.
15. N Kaloper et al., Phys. Rev. D 66 123510.
16. R H Brandenberger and J Martin, Int. J. Mod. Phys. A 17 (2002) 3663.
17. J Martin and R H Brandenberger, Phys. Rev. D 68 (2003).
18. U H Danielsson, Phys. Rev. D 71 (2005) 023516.
19. C Armendariz-Picon and E A Lim, J. Cosmology and Astroparticle Phys. 0312:006, (2003).
20. U H Danielson, Physical Review. D 66 (2002) 23511.
21. R Brandenberger and J Martin, astro-ph: 1211.6753.
22. M Mohsenzadeh et al., Mod. Phys. Lett. A 26 (2011) 2697.
23. J P Gazeau et al., Class. Quantum Grav. 17 (2000) 1415.
24. B Forghan et al., Annals of Physics 327 (2012) 2388.
25. S Rouhani and M V Takook, Euro. Phys. Lett. 68 (2004) 15.
26. A Refaei and M V Takook, Phys. Lett. B 704 (2011) 326.
27. M Mohsenzadeh et al., Int. J. Theor. Phys. 48 (2009) 755.
28. A R Liddle and D H Lyth, Phys. Rep. 231 (1993) 1.
29. A A Starobinsky, JETP Letters 30 (1979) 683.
30. E Yusofi and M Mohsenzadeh, Phys. Lett. B 735 (2014) 261.
31. M Mohsenzadeh et al., Eur. Phys. J. C 74 (2014) 2920-5.
32. E Yusofi, M Mohsenzadeh, and M R Tanhayi, The National Confrence on Gravitation and Cosmology, “Readout of Inflation with Quasi-de Sitter Initial Modes”, (2013), Tehran University.
33. N Kaloper, M Kaplighat, Phys. Rev. D 68 (2003) 123522.
36. M Razmi and H Zamani, Iranian Journal of Physics Research, 14, 3 (2014) 85.