Author

Abstract

Interest in the P3HT: ZnS nanocomposites are increased due to their applicability as an active layer for bulk heterojunction solar cells of high open circuit voltage and charge transport in this type of solar cells determines their performance. So the study of the conduction mechanism of the P3HT:ZnS nanocomposites is significant to improve the efficiency of such solar cells, and this paper discusses both the Arrhenius Model and the Variable Range Hopping (VRH) conduction mechanism in the P3HT:ZnS nanocomposite films. It is found that the addition of the semiconductor nanoparticles does not make any remarkable change in the room temperature DC conduction of P3HT polymer. Further, the films have been studied by their absorption spectra, x-ray diffractogram, scanning electron microscope and noncontact profilometer

Keywords

1. D I Black, “Fabrication Of Hybrid Inorganic And Organic Photovoltaic Cells”, PhD thesis, Emerging Technologies Research Centre, De Montfort University, Leicester, London (2011).
2. H E Unalan, P Hiralal, D Kuo, B Parekh, G Amaratunga, and M Chhowalla, J. Mater. Chem. 18 (2008) 5909.
3. J U Lee, J W Jung, T Emrick, T P Russell , and W H Jo , J. Mater. Chem. 20 (2010) 3287.
4. G K Mor, K Shankar, M Paulose, O K Varghese, and C A Grimes, Appl. Phys. Lett. 91 (2007) 152111.
5. J H Lee, J H Park, J S Kim, D Y Lee, and K Cho, Organic Electronics 10 (2009) 416.
6. M Bredol, K Matras, A Szatkowski, J Sanetra, and A P Schwa, Sol. Mat. Sol. C. 93 (2009) 662.
7. M Mall, P Kumar, S Chand, and L Kumar, Chem. Phys. Lett. 495 (2010) 236.
8. B R Saunders and M L Turner, Adv. Colloid Interfac. 138,1 (2008) 1.
9. A Kongkanand, K Tvrdy, K Takechi, M Kuno, and P V Kamat, J. Am. Chem. Soc. 130, 12 (2008) 4007.
10. W Martienssen and H Warlimont, "Springer Handbook of Condensed Matter and Materials Data" ed. 1, Springer, New York (2005).
11. Y Yang, S Xue, S Liu, J Huang, and J Shen, Appl. Phys. Lett. 69 (1996) 377.
12. T Abdul kareem and A Anu kaliani, Arabian Journal of Chemistry 4 (2011) 325.
13. H Y Chen, M K F Lo, G Yang, H G Monbouquette, and Y Yang, Nature Nanotechnology 3 (2008) 543.
14. Y Ding , P Lu, and Q Chen, Proc. of SPIE Vol. 7099 (2008) 709919.
15. Y T Chang, S O L Hsu, M H Su, and K H Wei, Adv. Mater. 21 (2009) 2093.
16. Y Kim, S A Choulis, J Nelson J, D D C Bradley, S Cook, and J R Durrant, Appl. Phys. Lett. 86 (2005) 063502.
17. J Lee, A Kim, S M Cho, and H Chae, Korean J. Chem. Eng. 29, 3 (2012) 337.
18. T W Yun and K Sulaiman, Sains Malaysiana 40, 1 (2011) 43.
19. Z Hu, T Daeri, M S Bonner, and A J Gesquiere, J. Lumin. 130, 5 (2010) 771.
20. Y Dong, J Lu, F Yan, and Q Xu, High Perform. Polym. 21 (2009) 48.
21. U Zhokhavets, T Erb, H Hoppe, G Gobsch, and N S Sariciftci, Thin Solid Films 496 (2006) 679.
22. J Guo, H Ohkita, H Benten, and S Ito, J. Am. Chem. Soc.132 (2010) 6154.
23. W H Lee, S Y Chuang, H L Chen, W F Su, and C H Lin, Thin Solid Films 518 (2010) 7450.
24. L E Greene, M Law, B D Yuhas, and P Yang, J. Phys. Chem. C 111, 50 (2007) 18451.
25. J U Lee , J W Jung, T Emrick, T P Russell, and W H Jo, Nanotechnology 21(2010) 105201.
26. M Khissi, M E Hasnaoui, J Belattar, M P F Graça, M E Achour, and L C Costa, J. Mater. Environ. Sci. 2, 3 (2011) 281.
27. D Choi, S Jin, Y Lee, S H Kim, D S Chung, K Hong, C Yang, J Jung, J K Kim, M Ree, and C E Park, Appl. Mater. Interfaces, 2, 1 (2010) 48.
28. J C Nolasco, R Cabré, J Ferré-Borrull, L F Marsal, M Estrada, and J Pallarès, J. Appl. Phys.107 (2010) 044505.
29. J A Letizia, J Rivnay, A Facchetti, M A Ratner , and T J Marks, Adv. Funct. Mater. 20 (2010) 50.
30. Y Park, S Noh, D Lee, J Y Kim and C Lee C., J. Korean Phys. Soc. 59, 2 (2011) 362.
31. R K Singh, J Kumar, R Singh, R Kant, R C Rastogi, S Chand, and V Kumar, New J. Phys. 8 (2006) 112.
32. N Othman, Z A Talib, A Kassim, A H Shaari, and J Y C Liew, Journal of Fundamental Sciences 5 (2009) 29.
33. A A Hendi, Life Sci. J. 8 (2011) 3.
34. M Taunk, A Kapil and S Chand, The Open Macromolecules Journal 2 (2008) 74

تحت نظارت وف ایرانی