Authors

Abstract

Using three cluster model, the ternary fission of (_"98" ^"252" )Cf is studied. We applied collinear and equatorial configurations to study the ternary fission of (_"98" ^"252" )Cf when three fragments are Sn, Ni and Ca. The potential energy of collinear and equatorial configurations is calculated. We calculated the potential energy for odd and even values of A3. Also, we compared the potential energy for (_"50" ^(A_"1" ))Sn+(_"28" ^(A_"2" ))Ni+(_"20" ^(A_"3" ))Ca and (_"50" ^(A_"1" -"1" ))Sn+(_"28" ^(A_"2" +"1" ))Ni+(_"20" ^(A_"3" ))Ca to investigate the influence of neutron numbers of three fragments. Obtained results show that for (_"50" ^(A_"1" ))Sn+(_"28" ^(A_"2" ))Ni+(_"20" ^(A_"3" ))Ca reaction with even A3 in collinear and equatorial configurations, the potential energy and penetration probability have ,respectively, minimum and maximum values in A3=48 whereas for odd values of A3 the minimum value for the potential energy and the maximum value of penetration probability take place in A3=49. For (_"50" ^(A_"1" -"1" ))Sn+(_"28" ^(A_"2" +"1" ))Ni+(_"20" ^(A_"3" ))Ca reactions in collinear and equatorial cases, the minimum value of potential energy and maximum value of penetration probability take place in A3=49 and A3=50, respectively, for even and odd values of A3. Also, among all the possible reactions the lowest value of potential energy and highest value of penetration probability happen for (_"50" ^132)Sn+(_"28" ^72)Ni+(_"20" ^48)Ca configuration.

Keywords

1. W J Swiatecki, in: Proceedings of the Second UN Conference on the Peaceful Uses of Atomic Energy, Geneva,1958, United Nations, Geneva 1958, Vol. 15, p. 651.
2. C Wagemans and A J Deruytter, Nucl. Phys. A 194 (1972) 657.
3. J P Theobald, P Heeg, and M Mutterer, Nucl. Phys. A 502 (1989) 343.
4. S Vermote, C Wagemans, O Serot, J Heyse, J VanGils, T Soldner, and P Ge ltenbort, Nucl. Phys. A 806 (2008) 1.
5. D N Poenaru, B Dobrescu, W Greiner, J H Hamilton,and AV Ramayya, J. Phys. G: Nucl. Part. Phys.26 (2000) L97.
6. S Thakur, R Kumar, K R Vijayaraghavan, and M Balasubramaniam, Int. J. Mod. Phys.E 22 (2013) 1350014.
7. G Farwell, E Segr‘e, and C Wiegand, Phys. Rev. 71 (1947) 327.
8. R K Choudhury and V S Ramamurthy, Phys. Rev. C 18 (1978) 2213.
9. V M Strutinsky et al., Nucl. Phys. 46 (1963) 639 .
10. H Diehl and W Greiner, Nucl. Phys. A 229 (1974) 29.
11. G Royer, F Haddad, and J Mignen, J. Phys. G. 18 (1992) 2015.
12. K Manimaran and M Balasubramaniam, Phys. Rev. C83 (2011) 034609.
13. K Manimaran and M Balasubramaniam, Phys. Rev. C79 (2009) 024610.
14. W von Oertzen, Y V Pyatkov, and D Kamanin, Act. Phys. Pol. B 44 (2013) 447.
15. K R Vijayaraghavan, W von Oertzen, and M Balasubramaniam, Eur. Phys. J. A 48 (2012) 27.
16. K Manimaran and M Balasubramaniam, J. Phys. G:Nucl. Part. Phys 37 (2010) 045104 .
17. K Manimaran and M Balasubramaniam, Eur. Phys. J. A 45 (2010) 293 .
18. G Audi and A H Wapstra, Nucl. Phys. A 595 (1995) 4.
19. P Moller, J R Nix, W D Myers, and W J Swiatecki, At. Data Nucl. Data Tables 59 (1995) 185.
20. S S Malik and Raj K Gupta, Phys. Rev. C 39 (1989) 1992.

تحت نظارت وف ایرانی