Authors
Abstract
In this research, the capability of new approach of making ridge waveguides in lithium niobate by Argon physical etching and diffusion of titanium is investigated. For this purpose, the proportion of light mode confinement in the ridge section is measured and compared to simulation results. Also the effect of ridge wall defects -which is a challenge of this kind of waveguides- in light power dissipation, is simulated. The ridge height reaches 2.5µm and the defects of ridge walls are measured to be about 200nm on average. In this research, by simulation of titanium diffusion and refractive index change of the waveguide it is demonstrated that although the defects exist in the ridge walls, by using appropriate diffusion depth of titanium and refractive index distribution, light power dissipation less than 3 dB/cm can be reached while mode confinement in the ridge section is more than 50 percent.
Keywords
[2] M. Bazzan and C. Sada, J. Appl. Phys. Rev., vol 2, no. 4, 2015, 040603.
[3] Y. S. Yim, and S. Y. Shin, Opt. Comm., vol. 152, 1998, 225.
[4] C. T. Lee, and W. H. Huang, Mic. Opt. Tech. Lett., vol. 53, no. 3,2011, 565.
[5] W. K. Burns, M. M. Howerton, R. P. Moeller, R. Kr¨ahenb¨uhl, R. W. McElhanon, and A. S. Greenblatt, J. Light. Tech., vol. 17, no. 12, 1999, 2551.
[6] H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, J. Vac. Sci. Tech., vol 24, no. 4, 2006, 1012.
[7] Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, J. App. Phys., vol. 103, no. 3, 2008, 034109.
[8] S. Benchabane, L. Robert, J. Y. Rauch, A. Khelif, and V. Laude, J. App. Phys., vol. 105, 2009, 094109.
[9] D. Jun, J. Wei, C. E. Png, S. Guangyuan, J. Son, H. Yang, and A. J. Danner, J. Vac. Sci. Tech., vol. 30, 2012, 011208.
[10] G. Ulliac, B. Guichardaz, J. Y. Rauch, S. Queste, S. Benchabane, and N. Courjal, Mic. Eng., vol. 88, 2011, 2417.
[11] G. Ulliac, N. Courjal, H. M. H. Chong, and R. M. De La Rue, Opt. Mat., vol. 31, 2008, 196.
[12] H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, Photon. Tech. Lett., vol. 19, no. 6, 2007, 417.
[13] G. Ulliac, A. Lecestre, B. Guichardaz, J. Dahdah, F. I. Baida, M. P. Bernal, and N. Courjal, Mic. Eng., vol. 97, 2012, 185.
[14] H. Hu, A. P. Milenin, R. B. Wehrspohn, H. Hermann, and W. Sohler, J. Vac. Sci. Tech., vol. A 24, 2006, 1012.
[15] M. Fukuma, J. Noda, and H. Iwasak, J. App. Phys., vol. 49, no.7, 1978, 3693.
[16] P. Ganguly, J. C. Biswas, and S. K. Lahiri, J. Opt., vol. 39, no. 4, 2010, 175.
[17] S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, Trans. Mic. Theo. Tech., vol. 30, no. 10, 1982, 1784.
[18] E. Strake, G. P. Bava, and I. Montrosset, J. Light w. Tech., vol 6, no. 6, 1988, 1126.