Authors
Abstract
A comparative study of magnetic properties of MnFe2O4 ferrite nanoparticles prepared by two different methods has been reported. The first sample (S1) was synthesized by thermal decomposition of metal nitrates. And the second sample (S2) was prepared by solvothermal method using Tri-ethylene glycol (TEG). Magnetic hysteresis loops at 300 and 5 K; magnetization and AC susceptibility measurements versus temperature confirmed the effective role of TEG on the magnetic properties of nanoparticles. The results showed that, at 300 K the saturation magnetization (MS) of S2 sample is 46% greater than that of S1 sample. At 5 K, the difference in MS of the samples raised to 60%. AC susceptibility measurements at different frequencies and also magnetization versus temperature under field cooling and zero field cooling processes revealed that, the TEG molecules influence the surface spins order of S2 sample. The sample S1 showed strongly interacting superspin glass state, while the sample S2 consists of weakly interacting superparamagnetic nanoparticles.
Keywords
2. M Pita, J M Abad, C Vaz-Dominguez, C Briones, E Mateo-Martí, J A Martín-Gago, M del Puerto Morales, and V M Fernández, J. Colloid Interface Sci. 321 (2008) 484.
3. S Rana, A Gallo, R S Srivastava, and R D K Misra, Acta Biomaterialia 3 (2007) 233.
4. Q Dai, D Berman, K Virwani, J Frommer, P-O Jubert, M Lam, T Topuria, W Imaino, and A Nelson, Nano Lett. 10 (2010) 3216.
5. K Praveena, K Sadhana, S Bharadwaj, and S Murthy, J. Magn. Magn. Mater. 321 (2009) 2433.
6. B K Kuanr, V Veerakumar, K Lingam, S Mishra, A V Kuanr, R Camley, and Z Celinski, J. Appl. Phys. 105 (2009) 07B522.
7. C S Kumar and F Mohammad, Adv. Drug Deliv. Rev. 63 (2011) 789.
8. B Aslibeiki, P Kameli, M H Ehsani, H Salamati, G Muscas, E Agostinelli, V Foglietti, S Casciardi, and D Peddis, J. Magn. Magn. Mater. 399 (2016) 236.
9. S Patra, E Roy, P Karfa, S Kumar, R Madhuri, and P K Sharma, ACS Applied Materials & Interfaces 7 (2015) 9235.
10. V Singh, V Srinivas, M Ranot, S Angappane, and J-G Park, Phys. Rev. B 82 (2010) 054417.
11. A Yang, C N Chinnasamy, J M Greneche, Y Chen, S D Yoon, K Hsu, C Vittoria, and V G Harris, Appl. Phys. Lett. 94 (2009) 113109.
12. P J van der Zaag, V A M Brabers, M T Johnson, A Noordermeer, and P F Bongers, Phys. Rev. B 51 (1995) 12009.
13. B Aslibeiki, Ceram. Int. 42 (2016) 6413.
14. G C Lavorato, E Lima Jr, D Tobia, D Fiorani, H E Troiani, R D Zysler, and E L Winkler, Nanotechnology 25 (2014) 355704.
15. J Wan, X Jiang, H Li, and K Chen, J. Mater. Chem. 22 (2012) 13500.
16. H Deligöz, A Baykal, E E Tanrıverdi, Z Durmus, M and S Toprak, Mater. Res. Bull. 47 (2012) 537.
17. C Cannas, A Ardu, A Musinu, D Peddis, and G Piccaluga, Chem. Mater. 20 (2008) 6364.
18. A Baykal, H Deligöz, H Sozeri, Z Durmus, and M S Toprak, J. Supercond. Novel Magn. 25 (2012) 1879.
19. Z X Tang, C M Sorensen, K J Klabunde, and G C Hadjipanayis, Phys. Rev. Lett. 67 (1991) 3602.
20. B Aslibeiki, and P Kameli, J. Supercond. Novel Magn. 28 (2015) 3343.
21. B Aslibeiki, P Kameli, I Manouchehri, and H Salamati, Curr. Appl. Phys. 12 (2012) 812.
22. R Topkaya, Ö Akman, S Kazan, B Aktaş, Z Durmus, and A Baykal, Journal of Nanoparticle Research 14 (2012) 1.
23. H Khurshid, W Li, M-H Phan, P Mukherjee, G C Hadjipanayis, and H Srikanth, Appl. Phys. Lett. 101 (2012) 022403.
24. R D Desautels, E Skoropata, Y Y Chen, H Ouyang, J W Freeland, and J v Lierop, J. Phys.: Condens. Matter 24 (2012) 146001.
25. T Shendruk, R Desautels, B Southern, and J Van Lierop, Nanotechnology 18 (2007) 455704.
26. S E Aalaye, P Kameli, H Salamati., and H Arabi., Iranian Journal of Physics Research 12 (2013) 361.
27. J I Gittleman, B Abeles, and S Bozowski, Phys. Rev. B 9 (1974) 3891.
28. M F Hansen and S Mørup, J. Magn. Magn. Mater. 203 (1999) 214.
29. C Cannas, A Musinu, G Piccaluga, D Fiorani, D Peddis, H K Rasmussen, S Mørup, J. Chem. Phys. 125 (2006) 164714.
30. D Peddis, F Orrù, A Ardu, C Cannas, A Musinu, and G Piccaluga, Chem. Mater. 24 (2012) 1062.
31. B Aslibeiki, P Kameli, and H Salamati, J. Appl. Phys. 119 (2016) 063901.
32. G Goya, T Berquo, F Fonseca, and M Morales, J. Appl. Phys. 94 (2003) 3520.
33. R D Desautels, E Skoropata, M Rowe, and J van Lierop, J. Appl. Phys. 117 (2015) 17C755.
34. K Nadeem, H Krenn, T Traussnig, R Würschum, D Szabó, and I Letofsky-Papst, J. Magn. Magn. Mater. 323 (2011) 1998.
35. M Suzuki, S I Fullem, I S Suzuki, and L Wang, C-J Zhong, Phys. Rev. B 79 (2009) 024418.
36. W Kleemann, O Petracic, C Binek, G Kakazei, Y G Pogorelov, J Sousa, S Cardoso, and P Freitas, Phys. Rev. B 63 (2001) 134423.
37. K Hiroi, K Komatsu, and T Sato, Phys. Rev. B, 83 (2011) 224423.
38. B Aslibeiki, P Kameli, and H Salamati, J. Magn. Magn. Mater. 324 (2012) 154.
39. B Aslibeiki, P Kameli, H Salamati, M Eshraghi, and T Tahmasebi, J. Magn. Magn. Mater. 322 (2010) 2929.
40. J L Dormann, D Fiorani, E Tronc, “Magnetic Relaxation in Fine-Particle Systems”, Adv. Chem. Phys., John Wiley & Sons, Inc. (1997) 283.
41. J Dormann, D Fiorani, and E Tronc, J. Magn. Magn. Mater. 202 (1999) 251.