Authors
Abstract
The melting of zigzag, armchair and chiral single walled boron nitride nanotubes (SWBNs) investigated using molecular dynamics (MD) simulation based on Tersoff-like many body potential. The MD simulation has been employed in the constant pressure, constant temperature (NPT) ensemble. The temperature and pressure of the system were controlled by Nose-Hoover thermostat and Berendsen barostat, respectively. We have computed the variation of the melting temperature with the radius of BN nanotube. The results show that the melting temperature of nanotubes increase with increasing in the size of radii, but this dependence is not the same for the various chiral angle of nanotubes. The relation of the melting point with radius for three types of nanotubes i.e. zigzag, armchair and chiral obtained. Moreover, our results show that the melting temperature of nanotubes approach a constant value at larger radii.
Keywords
2. T H Ferreira, P R O da Silva, R G dos Santos, E M B de Sousa, J. of Biomaterials
and Nanobiotechnology 2 (2011) 426.
3. V Nirmala, P Kolandaivel, Theochem 817 (2007) 137.
4. D Golberg, Y Bando, C C Tang, C Y Zhi, Advanced-materials 19 (2007)2413.
5. M Zheng, X Chen, I T Bae, C Ke, C W Park, M Smith, K Jordan, small 8 (2012) 116.
6. W H Moon, H J Hwang, Nanotechnology 15 (2004) 431.
7. A RUBIO, J L CORKILL, M L COHEN, Phys. Rev. B 49 (1994) 5081.
8. W Sekkaly, B Bouhafsy, H Aouragy and M Certierz, J. Phys.: Condens. Matter 10 (1998) 4975.
9. E S Oh, Met. Mater. Int. 17 (2011) 21.
10. H Koga, Y Nakamura, S Watanabe, T Yoshida, Science and Technology of Advanced Materials 2 (2001) 349.
11. V Verma, V K Jindal and K Dharamvir, Nanotechnology 18 (2007) 435711.
12. Y Xiao, X H Yan, J X Cao, J W Ding, Y L Mao and J Xiang, PHYSICAL REVIEW B 69 (2004) 205415.
13. W H Moon, H J Hwang, Physics Letters A 320 (2004) 446.
14. W H Moon, H J Hwang, Nanotechnology 15 (2004) 431.
15. J Davoodi, L Mehri, Iranian Journal of Physics Research 10 (2010) 239.
16. J Davoodi, M Asgarikhah, Iranian Journal of Physics Research 11 (2011) 161.
17. S. M. Huseini, S. M. Amini. Iranian Journal of Physics Research 2 (2001) 277.
18. M Peyvasteh, S Setayeshi, M Vaez Zadeh, R Afzal Zadeh. Iranian Journal of Physics Research 14 (2014) 187.
19. J M Haile, “Molecular Dynamics Simulation”, Johan Wiley and Sons, New York (1992).
20. M P Allen and D J Tildesly, “Computer Simulation of Liquids”, Oxford Science Publications, Oxford (1996).
21. J Tersoff, Phys. Rev. B 39 (1989) 5566.
22. J Zang, O Aldas-Palacios, and F Liu, Commun. Comput. Phys. 2 (2007) 451.
23. D Y Sun and X G Gong, J. Phys.: Condens. Matter. 14 (2008) L487.
24. H J C Berendsen, J P M Postma, W F Van Gunsteren, A Dinola, J R Hakk, J. Chem. Phys. 81 (1984) 3684.
25. S Nose, J. Chem. Phys. 81 (1984) 511.
26. W G Hoover, Phys. Rev. A 31 (1985) 1695.
27. K K Nada, S N Sahu, and S N Behera, Phys. Rev. A 66 (2002) 013208-1.
28. S K Nayak, J N Khanan, B K Rao and P Jena, Phy. Condens. Matter 10 (1998) 10853.