Authors

Abstract

The structural properties and microwave absorption capability of the iron nanoparticles and iron-carbon core-shell nanoparticles have been studied, in the present paper. The investigated nanoparticles were synthesized by hydrothermal route and by reduction of hematite nanoparticles during annealing in argon-hydrogen atmosphere. Hematite-iron phase transformation during the reduction process has been studied by X-ray diffraction (XRD). XRD patterns showed that in iron nanoparticles, hematite-iron phase transformation was completed after 30 min annealing whereas about iron-carbon nanoparticles, the phase transformation completion occurred after 65 min, and before 65 min annealing, wustite (FeO) phase was still present in XRD patterns. M-H loops and relative complex permittivity (ε) and permeability (µ) of the iron nanoparticles and iron-carbon nanocapsules were investigated too. According to the ε and µ spectra in 1-18 GHz, the carbon shell can affect microwave properties of the iron nanoparticles. Carbon shell can reduce microwave permeability and permittivity of the composites containing iron nanoparticles. 

Keywords

1. M Jazirehpour, M Shams, and O Khani, J. Alloys Compd. 545 (2012) 32.
2. M Jazirehpour and S A Seyyed Ebrahimi, J. Alloys Compd. 639 (2015) 280.
3. M H Shams, S M A Salehi, and A Ghasemi, Mater. Lett. 62 (2008) 1731.
4. P Kameli, Z Mosleh, M Ranjbar, and H Salamati, Iranian Journal of Physics Research 14, 4 (2015) 341.
5. K Rozanov, D Petrov, A Maratkanova, and A Chulkina, and S Lomayeva, Phys. Met. Metallogr. 115 (2014) 642.
6. L Qiao, R Han, T Wang, L Tang, and F Li, J. Magn. Magn. Mater. 375 (2015) 100.
7. S Yan, S Dai, H Ding, Z Wang, and D Liu, J. Magn. Magn. Mater. 358 (2014) 170.
8. Y Yang, Z W Li, C P Neo, and J Ding, J. Phys. Chem. Solids 75 (2014) 230.
9. R Han, L Qiao, T Wang, and F s Li, J. Alloys Compd. 509 (2011) 2734.
10. H Huang, X F Zhang, B Lv, F H Xue, A Shah, L Su, J G Yan, M Yao, and X L Dong, J. Appl. Phys. 113 (2013) 084312.
11. Khani, M Zargar Shoushtari, and M Farbod, Physica B: Condens. Matter. 477 (2015) 33.
12. X Liu, D Geng, H Meng, P Shang, and Z Zhang, Appl. Phys. Lett. 92 (2008) 173117.
13. X Liu, G Zhou, S W Or, and Y Sun, RSC Adv. 4 (2014) 51389.
14. Y Du, W Liu, R Qiang, Y Wang, X Han, J Ma, and P Xu, ACS Appl. Mater. Interfaces. 6 (2014) 12997.
15. R Ghosh Chaudhuri, and S Paria, Chem. Rev. 112 (2011) 2373.
16. Q He, Z Zhang, J Xiong, Y Xiong, and H Xiao, Opt. Mater. 31 (2008) 380.
17. J Gu, S Li, M Ju, and E Wang, J. Cryst. Growth 320 (2011) 46.
18. C Cao, Z Ma, C Ma, W Pan, Q Liu, and J Wang, Mater. Lett. 88 (2012) 61.
19. Karaagac, J Supercond. Nov. Magn. 26 (2013) 1707.
20. Karaagac, H Kockar, B Ebin, and S Gurmen, J. Mater. Sci.: Mater. Electron. 24 (2013) 2602.
21. W Liu, J Y Lim, M A Saucedo, A N Hayhurst, S A Scott, and J S Dennis, Chem. Eng. Sci. 120 (2014) 149.
22. C Trevisanut, F Bosselet, F Cavani, and J Millet, Catal. Sci. Tech. 5 (2015) 1280.
23. X Liu, B Li, D Geng, W Cui, F Yang, Z Xie, D Kang, and Z Zhang, Carbon 47 (2009) 470.
24. A Ferrari and J Robertson, Phys. Rev. B 64 (2001) 075414.
25. A C Ferrari and J Robertson, Phys. Rev. B 61 (2000) 14095.
26. H Danan, A Herr, and A J P Meyer, J. Appl. Phys. 39 (1968) 669.
27. P Gelin and B P Karine, IEEE Trans. Microw. Theory Techn. 45 (1997) 1185.
28. G T Rado, Phys. Rev. 89 (1953) 529.
29. 29. E. Schlomann, J. Appl. Phys. 41 (1970) 204.
30. P Gelin, P Quéffélec, and F Le Pennec, J. Appl. Phys. 98 (2005) 053906.
31. P Gelin and P Queffelec, IEEE. Trans. Magn. 44 (2008) 24.
32. D Polder, Physica 15 (1949) 253.
33. C Kittel, Phys. Rev. 73 (1948) 155.
34. D Polder and J Smit, Rev. Mod. Phys. 25 (1953) 89.
35. C Neo, Y Yang, and J Ding, J. Appl. Phys. 107 (2010) 083906.
36. D M Pozar, Microwave engineering, John Wiley & Sons, New York, (2005).
37. G Tong, W Wu, Q Hua, Y Miao, J Guan, and H Qian, J. Alloys Compd. 509 (2011) 451.

ارتقاء امنیت وب با وف ایرانی