Authors

Abstract

In this research, we have studied the photonic band structure, optical properties and thermal emission spectrum of 2D Silicon photonic crystal with hexagonal structure. The band structure, band gap map and the gap size versus radius have been calculated by plane wave expansion method. The maximum band gap size of TE (TM) polarization and the complete gap size are 51% (20%) and 17% at air hole radius r=0.43a (0.50a) and r=0.48a, respectively. The optical properies have been calculated by FDTD methd in the range of 1 to 10 . The thermal emission spectrum has been obtained from absorption by Kirchhoff’s law. The obtaine results show that by engineering the band structure, the thermal emission spectrum of 2D Silicon photonic crystal can be controlled in a manner that can be used in thermophotovoltaic systems.

Keywords

[1] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light: Princeton university press, 2011.
[2] C. Sibilia, T. M. Benson, M. Marciniak, and T. Szoplik, Photonic crystals: physics and technology: Springer, 2008.
[3] Q. Gong and X. Hu, Photonic Crystals: Principles and Applications: CRC Press, 2014.
[4] I. Čelanović, M. Ghebrebrhan, Y. X. Yeng, J. Kassakian, M. Soljačić, and J. Joannopoulos, "Photonic crystals: shaping the flow of thermal radiation," in MRS Proceedings, 2009, pp. 1162-J01-02.
[5] M. Alessandro, "Photonic Crystals-Introduction, Applications and Theory," ed: InTech, 2012.
[6] S. G. Johnson and J. D. Joannopoulos, Photonic crystals: the road from theory to practice: Springer, 2002.
[7] S.-y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, et al., "A three-dimensional photonic crystal operating at infrared wavelengths," Nature, vol. 394, pp. 251-253, 1998.
[8] K. Sakoda, Optical properties of photonic crystals vol. 80: Springer Science & Business Media, 2004.
[9] V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, et al., "High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals," Optics express, vol. 21, pp. 11482-11491, 2013.
[10] S. E. Han, "Thermal emission control with periodic microstructures," 2009.
[11] C. J. Schuler, C. Wolff, K. Busch, and M. Florescu, "Thermal emission from finite photonic crystals," Applied Physics Letters, vol. 95, p. 241103, 2009.
[12] Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, "Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems," Optics express, vol. 21, pp. A1035-A1051, 2013.
[13] Y. X. Yeng, J. B. Chou, V. Rinnerbauer, Y. Shen, S.-G. Kim, J. D. Joannopoulos, et al., "Global optimization of omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals," Optics express, vol. 22, pp. 21711-21718, 2014.
[14] V. Rinnerbauer, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, I. Celanovic, R. R. Harl, et al., "Low emissivity high-temperature tantalum thin film coatings for silicon devices," Journal of Vacuum Science & Technology A, vol. 31, p. 011501, 2013.
[15] Y. Nam, Y. X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, et al., "Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters," Solar Energy Materials and Solar Cells, vol. 122, pp. 287-296, 2014.
[16] V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, et al., "Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters," Journal of Vacuum Science & Technology B, vol. 31, p. 011802, 2013.
[17] M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, and J. Joannopoulos, "Tailoring thermal emission via Q matching of photonic crystal resonances," Physical Review A, vol. 83, p. 033810, 2011.
[18] I. Celanovic, "Thermophotovoltaics: Shaping the flow of thermal radiation," vol. 67, ed, 2006.
[19] E. Rephaeli and S. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Optics express, vol. 17, pp. 15145-15159, 2009.
[20] V. Rinnerbauer, A. Lenert, D. M. Bierman, Y. X. Yeng, W. R. Chan, R. D. Geil, et al., "Metallic Photonic Crystal Absorber‐Emitter for Efficient Spectral Control in High‐Temperature Solar Thermophotovoltaics," Advanced Energy Materials, vol. 4, 2014.
[21] Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M. Soljačić, et al., "Enabling high-temperature nanophotonics for energy applications," Proceedings of the National Academy of Sciences, vol. 109, pp. 2280-2285, 2012.
[22] V. Rinnerbauer, S. Ndao, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, et al., "Recent developments in high-temperature photonic crystals for energy conversion," Energy & Environmental Science, vol. 5, pp. 8815-8823, 2012.
[23] H. Ye, H. Wang, and Q. Cai, "Two-dimensional VO 2 photonic crystal selective emitter," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 158, pp. 119-126, 2015.
[24] M. Pralle, N. Moelders, M. McNeal, I. Puscasu, A. Greenwald, J. Daly, et al., "Photonic crystal enhanced narrow-band infrared emitters," Applied Physics Letters, vol. 81, pp. 4685-4687, 2002.
[25] A. Narayanaswamy and G. Chen, "Thermal emission control with one-dimensional metallodielectric photonic crystals," Physical Review B, vol. 70, p. 125101, 2004.
[26] A. Rogalski, Infrared detectors: CRC press, 2010.
[27] D. Hernández García, "Selective thermal emitters based on photonic crystals," 2014.
[28] D. Peykov, "The effects of capillarity on photonic crystal selective emitters," Massachusetts Institute of Technology, 2014.
[29] D. Peykov, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and C. A. Schuh, "Effects of surface diffusion on high temperature selective emitters," Optics express, vol. 23, pp. 9979-9993, 2015.
[30] M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, "Conversion of broadband to narrowband thermal emission through energy recycling," Nature Photonics, vol. 6, pp. 535-539, 2012.
[31] S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, et al., "Simple layer-by-layer photonic crystal for the control of thermal emission," Applied Physics Letters, vol. 86, p. 261101, 2005.
[32] H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, "Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region," JOSA A, vol. 18, pp. 1471-1476, 2001.
[33] J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, et al., "Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications," Optics express, vol. 22, pp. A144-A154, 2014.
[34] T. Bauer, Thermophotovoltaics: basic principles and critical aspects of system design: Springer Science & Business Media, 2011.
[35] M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, "Silicon-based photonic crystal nanocavity light emitters," Applied physics letters, vol. 89, p. 221101, 2006.
[36] B. J. O’Regan, Y. Wang, and T. F. Krauss, "Silicon photonic crystal thermal emitter at near-infrared wavelengths," Scientific reports, vol. 5, 2015.
[37] S. Guo and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Optics Express, vol. 11, pp. 167-175, 2003.
[38] S. Shi, C. Chen, and D. W. Prather, "Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers," JOSA A, vol. 21, pp. 1769-1775, 2004.
[39] S. G. J. a. J. D. Joannopoulos, "The MIT Photonic-Bands package home page http://ab-initio.mit.edu/mpb/.".
[40] A. Taflove, A. Oskooi, and S. G. Johnson, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology: Artech house, 2013.
[41] A. Taflove, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems," Electromagnetic Compatibility, IEEE Transactions on, pp. 191-202, 1980.
[42] U. S. Inan and R. A. Marshall, Numerical electromagnetics: the FDTD method: Cambridge University Press, 2011.
[43] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, vol. 181, pp. 687-702, 2010.
[44] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, vol. 181, pp. 687-702, 2010.
[45] E. D. Palik, Handbook of optical constants of solids vol. 3: Academic press, 1998.
[46] S. G. Johnson, S. Fan, P. R. Villeneuve, J. Joannopoulos, and L. Kolodziejski, "Guided modes in photonic crystal slabs," Physical Review B, vol. 60, p. 5751, 1999.
[47] V. Stelmakh, V. Rinnerbauer, R. Geil, P. Aimone, J. Senkevich, J. Joannopoulos, et al., "High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties, and fabrication," Applied Physics Letters, vol. 103, p. 123903, 2013.

ارتقاء امنیت وب با وف ایرانی