Authors
Abstract
In the present work, KTP crystals have been grown by spontaneous nucleation technique in flux medium using K6P < sub>4O13 flux. 0.4-1 °C/h cooling rates were applied in the spontaneous nucleation process. The presence and amount of impurities has been determined by using XRF. The optical transmission spectra of impure KTP crystals in the UV–visible region are discussed. The transmission cut-off is clearly shown at the optical absorption edge, as well as the rapidly reduced absorption with increasing wavelength. It is shown that the presence of impurity shifts the absorption edge of KTP towards lower energy region. The wavelength dependence of absorption coefficient is determined in the UV–visible range, and the characteristics of the optical absorption edge are discussed. Results reveal that the absorption edge and the type of optical charge carrier transition can be attributed to indirect transition for these crystals. It is shown that presence of impurity decreases the indirect band gap (Eg) of KTP crystals, causing the indirect transition absorption edge to move towards lower energy.
Keywords
[2] I Bhaumik, S Ganesamoorthy, R Bhatt, A K Karnal, R Sundar, V K Wadhawan Cryst. Res. Technol. 41 1180 (2006)
[3] J C Jacco, G M Zioacono, M Jaso, G Mizell, B Greenberg J. Cryst. Growth. 70 484 (1984)
[4] C V Kannan, S Ganesamoorthy, S Kumaragurubaran, C Subramanian, R Sundar, P Ramasamy Cryst. Res.Technol. 37 1049 (2002)
[5] P F Bordui, S Motakef J. Cryst. Growth. 96 405 (1989)
[6] T Sasaki, A Miyamoto, A Yokotani, S Nakai J. Crystal. Growth. 128 950 (1993)
[7] S Ganesamoorthy, F Josephkumar, S Balakumar, C Subramanian, P Ramasamy Mat. Sci. Eng. B 60 88 (1999)
[8] G M Loiacono, T F McGee, G Kostecky J. Cryst. Growth. 104 389 (1990)
[9] I Bhaumik, S Ganesamoorthy, R Bhatt, R Sundar, A K Karnal, V K Wadhawan J. Cryst. Growth. 243 522 (2002)
[10] L P Shi, J Chrosch, J W Wang, Y G Liu Cryst. Res.Technol. 27 76 (1992)
[11] S Haussuhl, S Luping, W Banlia, W Jiyang, J Liebertz, A Wostrack, C Fink Cryst. Res.Technol. 29 583 (1994)
[12] R J Bolt, H De Haas, M T Sebastian, H Klapper J.Crystal Growth. 110 587 (1991)
[13] P J Halfpenny, L O Neill, J N Sherwood, G S Simpson, A Yokotani, A Miyamoto, T Sasaki, S Nakai J.Crystal. Growth. 113 722 (1991)
[14] A Yokotani, A Miyamoto, T Sasaki, S Nakai J. Crystal Growth. 110 963 (1991)
[15] T Sasaki, A Miyamoto, A Yokotani, S Nakai J. Cryst. Growth. 129 950 (1993)
[16] E Gharibshahian, M J Tafreshi, M Fazli Indian J. Pure Appl.Phys. 47 356 (2009)
[17] A Miyamoto, Y Mori, T Sasaki Appl. Phys. Lett. 69 1032 (1996)
[18] CV Kannan, S Ganesamoorthy, H Kimura, A Miyazaki J.Crystal. Growth 279 403 (2005)
[19] D Souri, K Shomalian J. Non-Crys. Solids 355 1597 (2009)
[20] K De, A Textbook of Inorganic Chemistry (Wiley Eastern Limited, New Delhi), 7th edition, 1992
[21] D Bierlein, H Vanherzeele J. Opt. Sot. Am. B 6 622 (1989)
[ 22] V V Lemeshko, V V Obukhovskiy, V Stoyanov, N I Pavlova, A I Pisanskiy, P A Korotkov Ukran. Fii. Zh. 31 1746 (1986)
[23] G Hansson, H Karlsson, S Wang, F Laurell Appl.Optics. 39 5058 (2000)
[24] J C Jacco, G M Loiacono Appl. Phys. Lett. 58 560 (1990)
[25] R Blachman, P F Bordui, M M Fejer Appl. Phys. Lett. 64 1318 (1994)
[26] G M Loiacono, D N Loiacono, T McGee, M Babb J. Appl. Phys. 72 2705 (1992)
[27] M G J Roelofs Appl. Phys. 65 4976 (1989)
[28] K Terashima, M Takena, M Kawachi Jpn. J. Appl. Phys. 30 497 (1991)
[29] N B Angert, V M Garmash, N I Pavlova, A V Tarasov Sov. J. Quantum Electron. 21 426 (1991)
[30] L E Bausa, J G Sole, A Duran, J M F Navarro J. Non-Cryst. Solids 127 267 (1991)
[31] M J Martin, D Bravo, R Sole, F Diaz, F J Lopez, C Zaldo J. Appl. Phys. 76 7510 (1994)
[32] M J Martin, C Zaldo, F Diaz, R Sole, D Bravo, F J Lopez Radiat. Eff. Defects Solids 136 243 (1995)
[33] L E Halliburton, M P Scripsick SPIE. 235 2379 (1995)
[34] M P Scripsick, D N Loiacono, J Rottenberg, S H Goellner, L E Halliburton, F K Hopkins Appl. Phys. Lett. 66 3428 (1995)