Authors

Abstract

In this research we study the Mono-Z signature along with dark matter production at the LHC in a renormalizable dark matter model. We look at processes with L+L-+MET in the final state. We simulate signal and background events at central mass energy 14 TeV We then evaluate the LHC sensitivities for some points in the model parameter space for two integrated luminosities L=100 fb-1 and L=1 ab-1 The main goal in this investigation is to constrain the relevant Yukawa coupling taking into account the Mono-Z plus dark matter signature, Invisible Higgs decay width measurements, observed dark matter relic density and Higgs physics. We find out that there are regions in the parameter space which remain viable after applying all the constraints mentioned above.

Keywords

1. F Mayet, A M Green, J B R. Battat, and J Billard, arXiv phys. Rep. 629 (2016) 1.
2. Planck Collaboration, P A R Ade et. al., Astrophys.J.Suppl. 208 (2013) 19.
3. R Mandelbaum, U Seljak, G Kauffmann, C M. Hirata, and J Brinkmann, Mon. Not. Roy. Astron. Soc 368 (2006) 715.
4. M Boylan-Kolchin et.al., Astrophys.J. 768 (2013) 140.
5. K Ghorbani, JCAP 1501 (2015) 015.
6. L Lopez-Honorez, T Schwetz, and J Zupan, Phys. Lett. B 716 (2012) 179.
7. LUX Collaboration, D S Akerib et al., Phys. Rev. Lett. 112 (2014) 091303.
8. XENON100 Collaboration, E Aprile et al., Phys. Rev. Lett. 109 (2012) 181301.
9. J Billard, L Strigari, and E Figueroa-Feliciano, Phys. Rev. D 89 (2014) 023524.
10. Mariangela Lisanti, J. Phys. G 44 no. 10 (2017) 105004.
11. K Ghorbani, L Khalkhali, arXiv: 1608.04559 [hep- ph].
12. L Carpenter, A DiFranzo, M Mulhearn, C Shiminn, S Tulin, and D Whiteson, Phys. Rev. D 89 (2014) 075017.
13. A Berlin, T Lin, and L-T Wang, JHEP 06 (2014) 078.
14. N F Bell, J B Dent, A J Galea, T D Jacques, L M Krauss, and T J Weiler, Phys. Rev. D 86 (2012) 096011.
15. J M No, Phys. Rev. D 93 no. 3, (2016) 031701.
16. ATLAS Collaboration, Phys. Rev. D 90 no. 1, (2014) 012004, arXiv:1404.0051v3 [hep-ex].
17. N F Bell, Y Cai, and R K Leane, JCAP 1601 (2016) 051.
18. E Izaguirre, G Krnjaic, and B Shuve, Phys. Rev. D90, (2014) 055002.
19. Y Bai and J Berger, JHEP 11 (2013) 171.
20. Buchmueller, M J Dolan, S A Malik, and C McCabe, JHEP 01, 037 (2015), arXiv:1407.8257 [hep-ph] .
21. M Papucci, A Vichi, and K M Zurek, JHEP 11, (2014) 024.
22. K Hamaguchi, S P Liew, T Moroi, and Y Yamamoto, JHEP 05 (2014) 086.
23. H An, L -T Wang, and H Zhang, Phys. Rev. D 89, (2014) 115014.
24. CMS Collaboration, S Chatrchyan et al., Eur. Phys. J. C 74 (2014) 2980.
25. N Zhou, Z Khechadoorian, D Whiteson, and T M P Tait, Phys. Rev. Lett. 113 (2014)151801. [Erratum: Phys. Rev. Lett. 114, no. 22 (2015) 229901].
26. A Denner, S Heinemeyer, I Puljak, D Rebuzzi, and M Spira, Eur. Phys. J. C 71 (2011) 1753.
27. ATLAS, CMS Collaboration, G Aad, et al., arXiv:1606.02266 [hep-ex].
28. G Belanger, F Boudjema, A Pukhov, and A Semenov, Comput. Phys. Commun. 185 (2014) 960.
29. A Belyaev, N D Christensen, and A Pukhov, Comput. Phys. Commun. 184 (2013) 1729.
30. J Alwall, R Frederix, S Frixione, V Hirschi, F Maltoni, O Mattelaer, H S Shao, T Stelzer, P Torrielli, and M Zaro, JHEP 07 (2014) 079.
31. John Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, Tim Stelzer, “MadGraph 5 : Going Beyond”.
32. T Sjostrand, S Mrenna, and P Z Skands, JHEP 05 (2006) 026.
33. DELPHES 3 Collaboration, J de Favereau, C Delaere, P Demin, A Giammanco, V Lematre, A Mertens, and M. Selvaggi, “DELPHES 3”, JHEP 02 (2014) 057.
34. M Cacciari, G P Salam, and G Soyez, Eur. Phys. J. C 72 (2012) 1896.
35. M Cacciari, G P Salam, and G Soyez, JHEP 04 (2008) 063.
36. E Conte, B Fuks, and G Serret, Comput. Phys. Commun. 184 (2013) 222.
37. B Dumont, B Fuks, S Kraml, S Bein, G Chalons, E Conte, S Kulkarni, D Sengupta, and C Wymant, Eur. Phys. J. C 75 no. 2, (2015) 56.
38. J Ohnemus, Phys. Rev. D 50 (1994) 1931.
39. F Maltoni, K Mawatari and M Zaro, Eur. Phys. J. C 74, no. 1 (2014) 2710

ارتقاء امنیت وب با وف ایرانی