Authors
Abstract
We solved one-dimensional hydrodynamic (HD) equations of the slim disks in the presence of the wind and in cylindrical coordinates using self-similar solution. We considered power-law function of for mass loss rate due to wind. Then, we considered mass loss, angular-momentum loss and energy loss in equations. Then, we treated the influence of wind on the dynamics of the system. As an agreement with previous works, it was found that in the case of the slim disks, the effective temperature profile of slim disks is flatter with respect to that of the thin standard disks. Moreover, the mass and the angular momentum loss of the wind will increase the effective temperature of the slim disks. The results turned out that beside effective temperature of disks, the continuum spectrum emitted from the disk can also be affected in the presence of the wind
Keywords
2. J E Pringle, ARA&A, 19 (1981) 137.
3. J Frank, A King, and D Raine, “Accretion Power in Astrophysics”, 3rd ed., Cambridge University Press, Cambridge (2002).
4. S Kato, J Fukue, and S Mineshige, Black-HoleAccretionDisks: “Towards a New Paradigm”, Kyoto, Kyoto Univ. Press (2008).
5. M A Abramowicz and P C Fragile, Living Rev. Relativ., 16 (2013) 1.
6. Blaes, Space Science Rev., 183 (2014) 21.
7. J P Lasota, Ap&SSL, Inpress. arXiv:1505.02172 (2015).
8. R Narayan and I Yi, ApJ, 428 (1994) L13.
9. R Narayan and I Yi, ApJ, 444 (1995a) 238.
10. R Narayan and I Yi, ApJ, 452 (1995b) 710.
11. F Yuan and R Narayan, RRA&A, 52 (2014) 529.
12. M A Abramowicz B Czerny, J P Lasota, and E Szuszkiewicz, ApJ, 332 (1988) 646.
13. K Watarai and J Fukue, PASJ, 51 (1999) 725.
14. K Ohsuga, S Mineshige, M Mori, and M Vmemura, ApJ, 574 ( 2002) 315.
15. K Ohsuga, M Mori, T Nakamoto, and S Mineshige, ApJ, 628 (2005) 368.
16. K Watarai, ApJ, 648 (2006) 523.
17. J Fukue, PASJ, 56 (2004) 569.
18. M C Begelman and D L Meier, ApJ, 253 (1982) 873.
19. J M Wang and Y Y Zhou, ApJ, 516 (1999) 420.
20. K Watarai, J Fukue, M Takeuchi, and S Mineshige, PASJ, 52 (2000) 133.
21. S Mineshige, T Kawaguchi, M Takeuchi, and K Hayashida, PASJ, 52 (2000) 499.
22. W M Gu and J F Lu, ApJ, 660 (2007) 541.
23. W M Gu, ApJ, 753 (2012) 118.
24. E Quataert and A Gruzinov, ApJ, 545 (2000) 842.
25. G C Bower, M C Wright, H Falcke, and D C Backer, ApJ, 588 (2003) 331.
26. D P Marrone, J M Moran, J H Zhao, and R Rao, ApJ, 654 (2007) L57.
27. J M Stone, J E Pringle, and M C Begelman, MNRAS, 310 (1999) 1002.
28. F Yuan, M Wu, and D Bu, ApJ, 761 (2012a) 129.
29. F Yuan, D F Bu, and M Wu, ApJ, 761 (2012b) 130.
30. X H Yang, F Yuan, K Ohsuga, and D F Bu, ApJ, 780 (2014) 79.
31. A Mosallanezhad, M Khajavi, and S Abbassi, RA&A, 13 (2013) 87.
32. A Mosallanezhad , S Abbassi, and N Beiranvand, MNRAS, 437 (2014) 3112.
33. A Mosallanezhad, D F Bu, and F Yuan, MNRAS, 456, (2016) 2877.
34. M Samadi, S Abbassi, and M Khajavi, MNRAS, 437 (2014) 3124.
35. M Samadi and S Abbassi, MNRAS, 455 (2016) 3381.
36. J Ghanbari, SH Abbassi and N Jami al ahmadi, Iranian Journal of Physics Research, 11, 1 (2011) 1.
37. J Ghanbari, S Abbasi and A Tajmohammadi, Iranian Journal of Physics Research, 9, 3 (2009) 294.
38. F Z Zeraatgari, S Addassi, and A Mosallanezhad, ApJ, accepted: arXiv:160400373 (2016)
39. F Z Zeraatgari and S Addassi, ApJ, 809 (2015) 54.
40. R D Blandford and M C Begelman, MNRAS, 303 (1999) L1.
41. R D Blandford and D G Payne, MNRAS, 199 (1982) 883.
42. R T Emmering, R D Blandford, and I Shlosman, ApJ, 385 (1992) 460.
43. J M Miller, et al., Nature, 441 (2006a) 953.
44. V Icke, ApJ, 85 (1980) 329.
45. I Shlosman and P Vitello, ApJ, 409 (1993) 372S.
46. D Proga and A R Kallman, ApJ, 565 (2002) 455.
47. M C Begelman, C F McKee, and G A Shields, ApJ, 271 (1983) 70.
48. D T Woods, R I Klein, J I Castor, C F McKee, and J B Bell, ApJ, 461 (1996) 767.
49. S A Sim, D Proga, L Miller, K S Long, and T J Turner, MNRAS, 408 (2010) 1396.
50. N Higginbottom and D Proga, ApJ, 807 (2015) 107.
51. C Knigge, MNRAS, 309 (1999) 409