Authors
Abstract
This paper shows a theoretical study of the thermal properties of armchair grapehen nanoribbons in the presence of extended vacancies. Each graphene nanoribbons formed by superlattices with a periodic geometric structure, different size and symmetry of vacancies. The phonon dispersion, specific heat and thermal conductivity properties are described by a force-constant model and also by Landauer theory calculations. Our results show that the geometric structure of the vacancies and their positions have a significant roles in controlling the thermal properties, especially at low temperatures. Moreover, the out-of-plane and in-plane phonon modes exhibit a different role in the heat capacity and thermal phonon transport properties. Moreover, the out-of-plane phonon modes have more contribution in low temperature regime rather than in-plane phonon modes even in the presence of extended vacancies. The result may be useful for the design and improvement of thermal or thermoelectric nanodevices.
Keywords
[2] H. Zhang, L. Geunsik, C. Kyeongjae, Phys. Rev. B 84.11 (2011) 115460.
[3] P. Xiao-Fang, et al, Carbon 100 (2016) 36-41.
[4] H. Karamitaheri, et al, J. Appl. Phys 111.5 (2012) 054501.
[5] B. Liu, et al, J. Phys. D: Appl. Phys 47.16 (2014) 165301.
[6] M. Yarifard, J. Davoodi, H. Rafii-Tabar , Comput. Mater. Sci 111 (2016) 247-251.
[7] Z. X. Xie, C. Ke-Qiu, D. Wenhui, J. Phys: Condens. Matter 23.31 (2011) 315302.
[8] H. Tashakori, F. Kanjouri, A. Nejati, IJPR 14 (4) (2015) 221-224.
[9] J. Zimmermann, P. Pasquale, C. Gianaurelio, Phys. Rev. B 78.4 (2008) 045410.
[10] H. Karamitaheri, et al, IEEE. Trans. on Electron Devices 60.7 (2013) 2142-2147.
[11] H. Sadeghi, S. Sangtarash, J.L. Colin, Sci. reports 5 (2015) 9514.
[12] J. Davoodi, M.R. Tasheh, IJPR 13 (1) (2013) 45-50.
[13] Lan, Jinghua, et al, Phys. Rev. B 79.11 (2009) 115401.
[14] K. Zberecki, et al, Phys. Rev. B 88.11 (2013) 115404.
[15] S. K. Jaćimovski, et al, Superlattices and Microstructures 88 (2015) 330-337.
[16] J. J. Yeo, L. Zishun, N. Teng Yong, Nanotechnol 23.38 (2012) 385702.
[17] L. Rosales, et al, Phys. Rev. B 80.7 (2009) 073402.
[18] R. Saito S, G. Dresselhaus, M.S. Dresselhaus, London, Imperial college press, Physical properties of carbon nanotubes. (1998).
[19] Z. Ferdows, R. Lake, Appl. Phys. Lett 97.21 (2010) 212102.
[20] H. Sevinçli, M. Topsakal, and S. Ciraci, Phys. Rev. B 78 (2008) 245402.
[21] L. Rosales, M. Pacheco, Z. Barticevic, A. Latgé, and P. A. Orellana, Nanotechnol 20 (2009) 095705.
[22] C. Pan, J. He, D. Yang, K. Chen, J. Nanomaterials. 2016 (2016) 6093673.