By means of ab-initio calculations on the basis of the FPLAPW method, we compared the energy loss near edge structure (ELNES) of carbon K edges in crystalline phenanthrene and its isomer, anthracene. In these two organic compounds, different non-equivalent carbon atoms can result in distinct K edge spectra due to the different carbon-carbon bond lengths, as a characteristic behavior of the molecular crystals. The smaller bond lengths push the ELNES features to the higher energies. In anthracene, the energy position of the edge-onset appears at lower energies due to its smaller electronic band gap. At the onset of the  C K edge of anthracene, the strong splitting of the π* peak into two peaks is observable. Compared to the  C K edge in anthracene, due to the slightly larger C–C bond length in phenanthrene, the peak position of the main σ structure has a red shift. The ELNES spectrum of crystalline phenanthrene includes electron transition of 1s carbon orbital to π* and σ* states. In anthracene, the first two intense features have contributions of π* orbitals. Consideration of the core-hole approximation by means of super-cells and the collection of semi-angles at magic value are essential to obtain reasonable ELNES spectra.


1. C K Chiang, C R Fincher, Jr., Y W Park, A J Heeger, H Shirakawa, E J Louis, S C Gau, and A G MacDiarmid, Phys. Rev. Lett. 39 (1977) 1098.
2. A Kadyshevitch and R Naaman, Phys. Rev. Lett. 74 (1995) 3443.
3. E A Silinsh and V Capek, “Organic Molecular Crystals”, AIP Press, New York (1994).
4. J D Wright, “Molecular Crystals”, 2nd ed., Cambridge Univ. Press, UK (1995).
5. S R Forrest, Nature (London) 428 (2004) 911.
6. T W Kelly, P F Baude, Ch Gerlach, D E Ender, D Muyres, M A Hasse, D E Vogel, and S D Theiss, Chem. Matter. 16 (2004) 4413.
7. M Bendikov, F Wudl, and D F Perepichka, Chem. Rev. 104 (2004) 4891.
8. K Hummer and P Puschnig, C Ambrosch-Draxl, Phys. Rev. Lett. 92 (2004) 147402.
9. K Hummer, C. Ambrosch-Draxl, Phys. Rev. B 71 (2005) 081202.
10. K Hummer, C Ambrosch-Draxl, Phys. Rev. B 72 (2005) 205205.
11. S F Nelson, Y Y Lin, D J Gundlach, and T N Jackson, Appl. Phys. Lett. 72 (1998) 1854.
12. Y Kan, L Wang, H Yunchuan, W Guoshi, and Q Yong, Appl. Phys. Lett. 84 (2004) 1513.
13. I Shiyanovkaya, K D Singer, V Percec, T K Bera, Y Miura, and M Glodde, Phys. Rev. B 67 (2003) 035204.
14. M Oehzelt, R Resel, and A Nakayama, Phys. Rev. 66 (2002)174104.
15. K Hummer, P Puschnig, C Ambrosch-Draxl, Physica Scripta. T109 (2004) 152.
16. M T Bhatti, M Ali, S G N., and M Saleh, Turk. J. Phys. 24 (2000) 673.
17. X F Wang, R H Liu, Z Gui, Y L Xie, Y J Yan, J J Ying, X G Luo, and X H Chen, Nature. Commun. 1115 (2011) 1.
18. M Dadsetani, H Nejatipour, and A Ebrahimian, J. Phys. Chem. Solids 80 (2015) 67.
19. M Dadsetani, A Ebrahimian, and H Nejatipour, J. Materials Science in Semiconductor Processing, in press.
20. R F Egerton, “Electron Energy-Loss Spectroscopy in the Electron Microscope”, 2nd ed. Plenum (1996).
21. G A Botton, G Y Guo, W M Temmerman, and C J Humphreys, Phys. Rev. B 54 (1996) 1682.
22. T Mizoguchi, I Tanaka, S Yoshioka, M Kunisu, T Yamamoto, and W Y Ching, Phys. Rev. B 70 (2004) 045103.
23. P Blaha, K Schwarz, G Madsen, D Kvasicka, and J Luitz, “WIEN2k, An Augmented Plane Wave + Local Orbital Program for Calculating Crystal Properties”, Technical Universitat, Wien, Austria (2001).
24. C Hébert, J Luitz, and P Schattschneider, Micron 34 (2003) 219.
25. J T Titantah and D Lamoen, Phys. Rev. B 70 (2004) 075115.
26. H Nejati and M Dadsetani, Micron 67 (2014) 30.
27. J Luitz, M Maier, C Hébert, P Schattschneider, P Blaha, K Schwarz, and B Jouffrey, Eur. Phys. J. B 21 (2001) 363.
28. M Klues, K Hermann, and G Witte, J. Chem. Phys. 140 (2014) 014302.
29. M L Gordon, D Tulumello, G Cooper, A P Hitchcock, P Glatzel, O C Mullins, S P Cramer, and U Bergmann, J. Phys. Chem. A 107 (2003) 8512.
30. A L Pitman, J A Mcleod, E K Sarbisheh, E Kurmaev, J Müller, and A Moewes, J. Phys. Chem. C 117 (2013) 19616.
31. J P Perdew, K Burke, and M Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
32. V Blum, R Gehrke, F Hanke, P Havu, V Havu, X Ren, K Reuter, M Scheffler, Computer Physics Communications 180 (2009) 2175.
33. H A Bethe, Ann. Phys. 5 (1930) 325.
34. M Nelhiebel, P H Louf, P Schattschneider, P Blaha, K Schwarz, and B Jouffrey, Phys. Rev. B 59(1999) 12807.
35. D W Jones and J Yerkess, J. Cryst. Mol. Struct. 1 (1971) 17.
36. V C Sinclair, J Monteath Robertson, and A M Mathieson, Acta Cryst. 3 (1950) 251.
37. P L de Andres, A Guijarro, and J A Vergés, Phys. Rev. B 84 (2011) 144501.
38. K Hummer, P Puschnig, and C Ambrosch-Draxl, Phys. Rev. B 67 (2003) 184105.
39. G Vaubel and H Baessler, Phys. Lett. 27 (1968) 328.
40. E A Silinsh, “Organic Molecular Crystals”, Springer-Verlag, Berlin, Heidelberg, New York (1980).
41. P J Bounds and W Siebrand, Chem. Phys. Lett. 75 (1980) 414.
42. L Hedin, Phys. Rev. 139 (1965) 796.
43. J T Titantah and D Lamoen, Phys. Rev. B 72 (2005) 193104.

ارتقاء امنیت وب با وف ایرانی