نویسندگان

دانشکده فیزیک، دانشگاه صنعتی اصفهان، اصفهان

چکیده

در این مقاله، به بررسی نظری خواص ترابری الکتریکی داده‌های تجربی گزارش شده (مرجع [20])، مربوط به نیم‌رسانای کپه‌ای ZnO
و ساختارهای ناهمگون با چاه پتانسیل تکی و دوگانه ZnMgO/ZnO/ZnMgO
و ZnMgO/ZnO
پرداخته شده و مهم‌ترین پارامترهای پراکندگی کنترل کننده تراکم و تحرک الکترونی به دست آمده‌اند. بدین ‌منظور از سازوکارهای پراکندگی ذاتی نظیر فنون‌های اپتیکی- قطبی، فنون‌های پیزوالکتریک و پتانسیل تغییر شکل آکوستیکی و پراکندگی غیرذاتی نظیر ناخالصی‌های یونیزه، در رفتگی‌ها و میدان‌های کرنشی- القایی استفاده شده است. به منظور از بین بردن اثرات لایه تبهگن در سطح مشترک ZnO/sapphire
داده‌های تجربی مربوط به نیم‌رسانای کپه‌ای ZnO
با استفاده از مدل دولایه‌ای اثر هال تصحیح شده‌اند. همچنین، تراکم بخشنده‌ها و پذیرنده‌ها و انرژی فعالسازی مربوط به آنها با استفاده از معادله خنثایی بار به دست آمده‌اند. نتایج به دست آمده حاکی از آن است که برای دماهای کوچکتر از 50 کلوین، رسانش جهشی سازوکار رسانندگی غالب می‌باشد و پراکندگی ناشی از دررفتگی‌ها کنترل کننده رفتار دمایی تحرک الکترونی در سرتاسر گستره دمایی می‌باشد. در مورد ساختار‌های ناهمگون، نتایج به دست آمده نشان می‌دهد که افزایش تحرک الکترونی در نمونه با چاه پتانسیل دوگانه نسبت به نمونه با چاه پتانسیل تکی به کاهش تراکم در رفتگی‌ها، تراکم ناخالصی‌ها در چاه پتانسیل، بار سطح مشترک و میدان های کرنشی- القایی نسبت داده می‌شود که در نتیجه محصور سازی الکترونی قویتر در کانال رسانشی به دست آمده است. 
 

کلیدواژه‌ها

عنوان مقاله [English]

The electrical transport properties in ZnO bulk, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO heterostructures

نویسندگان [English]

  • M Amirabbasi
  • E Abdolhosseini Sarsari

چکیده [English]

p { margin-bottom: 0.1in; direction: rtl; line-height: 120%; text-align: right; }a:link { color: rgb(0, 0, 255); }



In this paper, the reported experimental data related to electrical transport properties in bulk ZnO, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO single and double heterostructures were analyzed quantitavely and the most important scattering parameters on controlling electron concentration and electron mobility were obtained. Treatment of intrinsic mechanisms includes polar-optical phonon scattering, piezoelectric scattering and acoustic deformation potential scattering. For extrinsic mechanisms, ionized impurity, dislocation scattering and strain induced fields are included. For bulk ZnO, the reported experimental data were corrected for removing the effects of a degenerate layer at the ZnO/sapphire interface via a two – layer Hall – effect model. Also, donor density, acceptor density and donor activation energy were determined via the charge balance equation. This sample exhibits hopping conduction below 50K and dislocation scattering controls electron mobility closely. Obtained results indicate that enhancement of electron mobility in double sample as compared with single one can be attributed to reduction of dislocation density, two dimensional impurity density in the potential well due to background impurities and/or interface charge and strain induced fields which can be related to better electron confinement in the channel and enhancement in sheet carrier concentration of 2DEG in this sample.

کلیدواژه‌ها [English]

  • ZnMgO/ZnO/ZnMgO
  • ZnO/sapphire interface
  • heterostructures
  • scattering mechanisms

1. J Dai, X Han, Z Wu, Y Fang, H Xiong, Y Tian, C Yu, Q He, and C Chen, Journal of Electronic Materials 40, 4 (2011) 466. 2. L Meng, L Zheng, L Cheng, G Li, L Huang, and Y Gu, J. Materials Chemistry 21, 30 (2011) 11418. 3. K Park and H Hwang, J Seo, and W-S Seo, Energy 54 (2013) 139. 4. C Pholnak, S Suwanboon, and C Sirisathitkul, J. Materials Science: Materials in Electronics, 24 (2013) 12 5014. 5. H Morkoc and U Ozgur, “Zinc Oxide Fundamentals, Materials and Device Technology”, Wiley-Vch (2009). 6. C Wang, R Boa, K Zhao, T Zhang, and L Dong, Nano Energy 14 (2015) 364. 7. H Wang, Y Zhao, C Wu, X Dong, B Zhang, G Wu, Y Ma, and G Du, J. Luminescence 158 (2015) 6. 8. J Kwon, Y K Hong, H-J Kwon, Y Park, B Yoo, J Kim, C P Grigoropoulos, M S Oh and S Kim, Nanotechnology 26 (2015) 035202. 9. L Guoa, H Zhanga, and D Zhaoa, B Lia, Z Zhanga, M Jianga, and D Shen, Sensors and Actuators B: Chemical 166-167 (2012) 12. 10. Z F Shi, Y T Zhang, X J Cui, S W Zhuang, B Wu, X W Chu, X Dong, B L Zhang, and G T Dou, Phys. Chem. Chemical Physics 17 (2015) 13813. 11. M Szymański, H Teisseyre, and A Kozaneck, Physica Status Solidi (a) 211 (2014), 2105. 12. J Bian, X Kou, Z Zhang, Y Zhang, J Sun, F Qin, W Liu, and Y Luo, Materials Science in Semiconductor Processing 16 (2013) 1684. 13. L Sang, S Y Yang, G P Liu, G J Zhao, B C Liu, C Y Gu, H Y Wei, X L Liu, Q S Zhu, and Z G Wang, IEEE Trans. Electron Devices 60 (2013) 2077. 14. H C Wang, C H Liao, Y L Chueh, C C Lai, L H Chen, and R C C Tesiang, Optical Materials Express 2 (2013) 237. 15. P Kuznetsov, V Lusanov, G Yakushcheva, V Jitov, L Zakharov, I Kotelyanskii, and V Kozlovsky, Physica Status Solidi C 7 (2010) 1568. 16. P Barquinha, E Fortunato, A Goncalves, A Pimmentel, A Marques, L Pereira, and R A Martins, Adv. Mater. Forum. 68 (2006) 514. 17. M Amirabbasi, Modern Phys. Lett. B 27 (2013) 1350170. 18. X Ji, Y Zhu, M Chen, L Su, A Chen, X Gui, R Xiang, and Z Tang, Scientific Reports 4 (2014) 4185. 19. L Meng, J Zhang, Q Li, and X Hou, Journal of Nanomaterial 2015, 26 (2015) 1. http:// dx.doi. org/ 10.1155/2015/694234. 20. J Ye, S T Lim, M Bosman, S Gu, Y Zheng, H Tan, C Jagadish, X Sun, and K L Teo, Sci. Rep. 2 (2012) 533. 21. D C Look, “Electrical Characterization of GaAs Material and Devices”, John Wiley (1998). 22. D C Look, D C Reynolds, J R Sizelove, R L Jones, C W Litton, G Cantwell, and W C Harsch, Solid State Commun. 105 (1998) 339. 23. E Furno, F Bertazzi, M Goano, G Ghione, and E Belloti, Solid State Electronics 52 (2008)1796. 24. D L Rode, Low-field Electron Transport, Semiconductors and Semimetals 10 (1975) 1. 25. D A Anderson and N Aspley, Semicond., Sci. Technol. 1 (1986) 187. 26. H Ehrenreich, J. Phys. Chem. and Solids 8 (1995) 130. 27. H Brooks, Phys. Rev. 83 (1951) 879. 28. H Tang, W Kim, A Botchkarev, G Popovici, F Hamdani, and H Morkoc, Solid State Electronics 42 (1998) 839 29. B Podor, Phys. Status Solidi 16 (1966) K167. 30. D C Look and R J Monlar, Appl. Phys. Lett. 70 (1997) 3377. 31. B K Ridley, J. Phys. C 15 (1982) 5899. 32. K Hirakawa and H Sakaki, Phys. Rev. B 33 (1986) 8297. 33. K Lee, M S Shur, T J Drummond, and H Morkoc, J. Appl. Phys. 54 (1983) 6432. 34. P K Basu and B R Nag, Phys. Rev. B 22 (1980) 4849. 35. J P Price, Ann. Phys. 133 (1981) 217. 36. P J Price and J Vac, Sci. Technol. 19 (1981) 599. 37. K Hess, Appl. Phys. Lett. 35 (1979) 484. 38. C T Sah, T H Ning, and L L Tscopp, Surf. Sci. 32 (1972) 561. 39. S D Sarma and F Stern, Phys. Rev. B 32 (1985) 8442. 40. J H Davies, “The Physics of Low Dimensional Semiconductors”, Cambridge University Press (1998). 41. D C Look, R L Jones, J R Sizelove, N Y Garces, N C Giles, and L E Halliburton, Phys. Status Solidi a 195 (2003) 171. 42. F Vigue, P Vennegues, C Deparis, S Vezian, M Laugt, and J P Faurie, J. Appl. Phys. 90, 10 (2001) 5115. 43. J A Davis and C Jagadish, Laser Photon. Rev. 3 (2008) 85. 44. N G Weimann, L F Eastma, D Doppalapudi, H M Ng, and T D Maustakus, J. Appl. Phys. 83 (1998) 3656. 45. T Ando, A B Fowler, and F Stren, Rev. Mod. Phys. 54 (1982) 437.

تحت نظارت وف بومی