Authors

Abstract

In this work, the stability and electronic structure of zigzag double-walled silicon carbide nanotubes (DWSiCNTs) (6,0)@(n,0) (with n=11-17) were investigated by using ab initio Van der Waals density functional. By calculating the formation energy and the binding energy of each double walled nanotube, the best interwall distance for the outer nanotube was indicated. The results revealed that (13,0) nanotube could be the best external nanotube for the (6,0) internal nanotube with 3.53 Åinterwall distance to make (6,0)@(13,0) DWSiCNT. The structural calculations also revealed that all studied silicon carbide nanotubes were semiconductors and their energy gap decreased from the single one to the double-walled one. Moreover, with raising the nanotube diameter, the energy gap increased, such that at the most stable double-walled nanotube, its value was about 0.216 eV.

Keywords

1. N Ghajari Bardar, A Kompany, T Movlarooy, F Roozban, and M majidiyan, Journal of Magnetism and Magnetic Materials 325 (2012) 42.
2. T Movlarooy, Journal of Magnetism and Magnetic Materials 441 (2017) 139.
3. D Vahedi Fakhrabad, T Movlarooy and N Shahtahmasebi, Phys. Status Solidi B 249 (2012)1027.
4. S Iijima, T Ichihashi, Nature 363 (1993) 603.
5. T Movlarooy, S M Hosseini, A Kompany and N Shahtahmasebi, Computational Materials Science 49 (2010) 450.
6. M S Dresselhaus, G Dresselhaus, and P H Avouris, “Carbon Nanotubes Synthesis, Structure, Properties, and Applications”, Springer, Topics in Applied Physics 80 (2001).
7. T Movlarooy, S M Hosseini, A Kompany and N Shahtahmasebi, Phys. Status Solidi B 247 (2010) 1814.
8. J Sha, J Niu, X Ma, J Xu, X Zhang, Q Yang, and D Yang, Adv. Mater. 14 (2002)1219.
9. T Movlarooy, S M Hosseini, A Kompany and N Shahtahmasebi, International Journal of Nanoscience 10 (2011) 587.
10. T Movlarooy, Chin. Phys. Lett. 30 (2013) 077301.
11. P Marsi, Surf. Sci. Rep. 48 (2002)1.
12. X H Sun, C P Li,W K Wong, N B Wong, C S Lee, S T Lee, and B K Teo, J. Am.Chem. Soc. 124 (2002) 14464.
13. M Menon, E Richter, A Mavrandonakis, G Froudakis, and A N Andriotis, Phys. Rev. B 69 (2004) 115322.
14. A Huczko, M Bystrzejewski, H Lange, A Fabianowska, S Cudzilo, A Panas, M S Cudzilo, A Panas, and M Szala, J. Phys. Chem. B. 109 (2005)16244.
15. Y H Gao, Y Bando, K Kurashima, and T Sato, Journal of Materials Science 37 (2002) 2023.
16. T Taguchi, N Igawa, H Yamamoto, S Shamoto, and S Jitsukawa, Physica E 28 (2005) 431.
17. W M Zhou, B Yang, Z X Yang, F Zhu, L J Yan, and Y F Zhang, Appl. Sci. 252 (2006) 5143.
18. K Adhikari and A K Ray, Sol. State comm. 151 (2011) 430.
19. R Moradian, S Behzad, and R Chegel, Physica E 42 (2009) 172.
20. K Berland and P Hyldgaard, Phys. Rev. B 89 (2014) 035412.
21. P Ordejon, E Artacho, and J Soler, Phys. Rev. B 53 (1996) 10441.
22. S H Jhi, D J Roundy, S G Louie, and M L Cohen, Sol. St. Comm. 134 (2005) 397.

ارتقاء امنیت وب با وف ایرانی