Authors
Abstract
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'}
span.s1 {font: 12.0px 'B Nazanin'}
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 12.0px 'Times New Roman'}
span.s1 {font: 12.0px 'B Nazanin'}
In this paper, we study the structural and electronic properties of the cubic PbTiO3 compound by using the density functional theory. For the calculation of band structure and density of states, we use the modified Becke–Johnson exchange potential proposed by Tran and Blaha (TB-mBJ), including the relativistic spin-orbit coupling (SOC). The results obtained from TB-mBJ functional and SOC calculations show that the calculated band gap is 2.18 eV. IRelast computational package is very recently implemented into the WIEN2k code and can be used to calculate the elastic constants of the crystal structures, where IR stands for Iran. We calculate the elastic constants of this compound by the IRelast code using the PBE-GGA, PBEsol-GGA, LDA, BPW91 and Engel-Vosko functionals. Then, by these elastic constants, we obtain some other related physical quantities such as shear constant, bulk modulus, Young’s modulus and Poisson’s ratio. Furthermore, we calculate the ductility of the compound under question. The calculated ductility shows that our compound is formable and not fragile. The effect of pressure on the elastic constants shows that C11, C12 and C44 are increased as the pressure is raised inside the considered pressure interval. Furthermore, the longitudinal and transverse sound velocities are derived for the compound using its calculated elastic constants. The results, therefore, show that the sound velocities, like elastic constants, are increased as pressure is raised .
Keywords
2. N Hamdad and B Bouhafs, Physica B: Condensed Matter 405 (2010) 4595.
3. R Nelmes and W Kuhs, Solid State Communications 54 (1985) 721 .
4. S de Lazaro, E Longo, J R Sambrano, and A Beltrán, Surface Science 552 (2004) 149.
5. G Sághi-Szabó, R E Cohen, and H Krakauer, Physical Review Letters 80 (1998) 4321.
6. G Sághi-Szabó, R E Cohen, and H Krakauer, Physical Review B 59 (1999) 12771.
7. E Leite, L Santos, N Carreno, E Longo, C Paskocimas, J A Varela, F Lanciotti Jr, C Campos, and P Pizani, Applied Physics Letters 78 (2001) 2148.
8. P Blaha, K Schwarz, G K Madsen, D Kvasnicka, and J Luitz, “Wien2k, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties”, Vienna University of Technology, Institute of Materials Chemistry (2001).
9. J Callaway, “Quantum Theory of the Solid State”, Academic Press (2013).
10. H Tashakori, F Kanjouri, and A Nejati, Iranian Journal of Physics Research 14, 4 (2015) 221.
11. M Sanati, R Albers, T Lookman, and A Saxena, Physical Review B 84 (2011) 014116.
12. R Stadler, W Wolf, R Podloucky, G Kresse, J Furthmüller, and J Hafner, Physical Review B 54 (1996) 1729.
13. O Nielsen, and R M Martin, Physical Review Letters 50 (1983) 697.
14. M Jamal, M Bilal, I Ahmad, and S Jalali-Asadabadi, Journal of Alloys and Compounds 735 (2018) 569 .
15. M Jamal, S J Asadabadi, I Ahmad, and H R Aliabad, Computational Materials Science 95 (2014) 592 .
16. X Li, “All Electron G0W0 Code Based on FP-(L) APW+ lo and Applications”, Freie Universität Berlin (2008).
17. M Saghayezhian, S Hashemifar, H Akbarzadeh, and J Zarbakhsh, Iranian Journal of Physics Research 11, 3 (2011) 245.
18. H A Badehian, H Salehi, and M Farbod, Iranian Journal of Physics Research 15, 1 (2015) 1.
19. M Dadsetani and H Nejatipour, Iranian Journal of Physics Research 11, 2 (2011) 129.
20. A Aguayo, G Murrieta, and R De Coss, Physical Review B 65 (2002) 092106.
21. R Hill, “The Elastic Behaviour of a Crystalline Aggregate,” Proceedings of the Physical Society, Section A 65, 5 (1952) 349.
22. S Pugh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (1954) 823.
23. F Tran and P Blaha, Physical Review Letters 102 (2009) 226401.
24. R Iqbal, M Bilal, S Jalali-Asadabadi, H Rahnamaye Aliabad, and I Ahmad, International Journal of Modern Physics B 32 (2018) 1850004.
25. M Shafiq, I Ahmad, and S Jalali Asadabadi, Journal of Applied Physics 116 (2014) 103905.
26. M Shafiq, I Ahmad, and S Jalali-Asadabadi, The Royal Society of Chemistry Advances 5 (2015) 39416.
27. M Shafiq, S Arif, I Ahmad, S J Asadabadi, M Maqbool, and H R Aliabad, Journal of Alloys and Compounds 618 (2015) 292.
28. J P Perdew, K Burke, and M Ernzerhof, Physical Review Letters 77 (1996) 3865.
29. J P Perdew, A Ruzsinszky, G I Csonka, O A Vydrov, G E Scuseria, L A Constantin, X Zhou, and K Burke, Physical Review Letters 100 (2008) 136406.
30. J P Perdew, and A Zunger, Physical Review B 23 (1981) 5048.
31. A D Becke, Physical Review A 38 (1988) 3098.
32. J P Perdew and Y Wang, Physical Review B 56 (1997) 7018.
33. E Engel and S H Vosko, Physical Review B 47 (1993) 13164.
34. Z Wu and R E Cohen, Physical Review B 73 (2006) 235116.
35. N Pandech, K Sarasamak, and S Limpijumnong, Ceramics International 39 (2013) S277.
36. S Piskunov, E Heifets, R Eglitis, and G Borstel, Computational Materials Science 29 (2004) 165.
37. V I Anisimov, F Aryasetiawan, and A Lichtenstein, Journal of Physics: Condensed Matter 9 (1997) 767.
38. R King-Smith, and D Vanderbilt, Physical Review B 49 (1994) 5828.
39. U Waghmare, and K Rabe, Physical Review B 55 (1997) 6161.
40. W Huang, H Yang, G Lu, and Y Gao, Physica B Condensed Matter 411 (2013) 56.
41. A Tröster, S Ehsan, K Belbase, P Blaha, J Kreisel, and W Schranz, Physical Review B 95 (2017) 064111.
42. Z Li, M Grimsditch, C Foster, and S K Chan, Journal of Physics and Chemistry of Solids 57 (1996) 1433.
43. M Taib, M Yaakob, O Hassan, and M Yahya, Integrated Ferroelectrics 142 (2013) 119.