Author

Abstract

Motivated by recent reported experiments, droplet deformation in a flat funnelform diverging microfluidic channel has been numerically studied. The structure of our microchannel is composed of two consecutive elements including a straight channel and a diverging channel. In this work, instead of solving the 3D Stokes equation, we solve a depth-averaged problem which is labeled two-dimensional problem. Employing the boundary element method (BEM), we numerically solve the Darcy equation in the two-dimensional and investigate droplet motion and droplet deformation as the droplet enters the flat funnelform diverging channel. Numerical simulations indicate that when a deformable droplet approaches the intersection of straight channel and funnelform diverging channel, the droplet decelerates and deforms. We numerically find that maximum deformation of droplet depends on droplet size, capillary number, and channel geometry. Our numerical scaling is in good agreement with the experimental scaling reports.

Keywords

1. N T Nguyen and S Wereley, “Fundamentals and Applications of Microfluidics”, London, Boston (2002).
3. N Maleki Jirsaraee, H Parnak, A Bigdeli, and S Rouhani, Iranian Journal of Physics Reseach 14, 4 (2015) 267.
4. G Tomaiuolo, M Barra, V Preziosi, A Cassinese, A B Rotoli, and S Guido, Lab Chip 11, 3 (2011) 449.
5. S Guido and V Preziosi, Adv. Colloid Interface Sci. 161, 1 (2010) 89.
6. C N Baroud, F Gallaire and R Dangla, Lab Chip 10 16 (2010) 2032.
7. J C Baret, Lab Chip 12, 3 (2012) 422.
8. S Guido and G Tomaiuolo, Comptes Rendus Physique 10, 8 (2009) 751.
9. E Kadivar, S Herminghaus, and M Brinkmann, J. Phys.: Condens. Matter 25, 28 (2013) 285102.
10. E Kadivar, Eur. J. Mech. B. Fluids 57 (2016) 75.
11. D R Link, S L Anna, D A Weitz, and H A Stone, Phys. Rev. Lett. 92, 5 (2004) 054503.
12. L Salkin, A Schmit, L Courbin, and P Panizza, Lab on a Chip 13, 15 (2013) 3022.
13. N Bremond, A R Thiam, and J Bibette, Phys. Rev. Lett. 100, 2 (2008) 024501.
14. J C Baret, V Taly, M Ryckelynck, C A Merten, and A D Griffiths, Med. Sci. 25, 6 (2009) 627.
15. E Kadivar, EuroPhysics Letters 106, 2 (2014) 24003.
16. G Taylor, Proc. R. Soc. London, Ser. A 138, 834 (1932) 41.
17. G Taylor, Proc. R. Soc. London, Ser. A 146, 858 (1934) 501.
18. J M Rallison, Annu. Rev. Fluid. Mech. 16, 45 (1984) 45.
19. B Bentley and L Leal, Fluid. Mech. 167 (1986) 241.
20. Q Brosseau, J Vrignon, and J C Baret, Soft Matter 10, 1 (2014) 3066.
21. C Ulloa, A Ahumada, and M L Cordero, Phys. Rev. E 89, 3 (2014) 033004.
22. H Xi and C Duncan, Phys. Rev. E 59, 3 (1999) 3022.
23. A Gupta, M Sbragaglia, and A Scagliarini, J. Comput. Phys. 29, 1 (2015) 177.
24. E S Romm, “Fluid Flow in Fractured Rocks”, Phillips Petroleum Company (1966).
25. M Nagel and F Gallair, Comput. & Fluids 107, 1 (2015) 272.
26. P T Brun, M Nagel, and F Gallaire, Phys. Rev. E 88, 4 (2013) 043009.
27. E Kadivar and A Alizadeh, Eur. Phys. J. E 40, 1 (2017) 31.
28. E Kadivar and M Farrokhbin, Physica A 479, 1 (2017) 449.
29. C Pozrikids, “A Practical Guide to Boundary Element Methods”, USA, Florida, CRC Press (2002).
30. T Cubaud, Phys. Rev. E 80, 2 (2009) 026307.

تحت نظارت وف ایرانی