نویسندگان

گروه فیزیک، دانشگاه سیستان و بلوچستان

چکیده

گرافن یک گزینه مناسب برای استفاده در الکترونیک با سرعت بالا در آینده است. یک لایه نازک از کربن خالص، که در آن هر اتم برای واکنش شیمیایی از دو طرف (به علت ساختار D 2) در دسترس است. این تنها شکل کربن (یا ماده جامد) با این ویژگی مشخص است. اکسید گرافن (GO) از طریق اکسیداسیون گرافیت به روش هومر، که در آن مدت زمان اکسایش طولانی با یک روش بسیار مؤثر برای خالص‌سازی محصولات واکنش، ترکیب شده است، سنتز شد. برای احیایGO، پس از اضافه کردن اسید اسکوربیک، نمونه بازپخت حرارتی شد. برای بررسی ساختار GO و G، از تصویر برداری میکروسکوپ الکترونی عبوری و همچنین طیف رامن نمونه‌ها استفاده شد. جهت محاسبه مقاومت ویژه گرافن، ضخامت گرافن به طریق اپتیکی به دست آمد. نتایج رامن نشان می‌دهد که پس از احیای اکسید گرافن به گرافن مد D (اغتشاش) به سمت عدد موج بالاتر جابه‌جا شده، در حالی که مد G به سمت عدد موج پایین‌تر به همراه افزایش شدت جابه‌جا می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Raman spectroscopy study of nano sheets of graphene and measurement of their resistivity

نویسندگان [English]

  • N Ghassemi
  • M Zolfaghari

چکیده [English]

Graphene is a promising candidate for future high-speed electronics applications. It is a thin layer of pure carbon in which every atom is available for chemical reaction from two sides (due to the 2D structure). This is the only form of carbon (or solid material) with this characteristic feature. Graphene oxide (GO) was synthesized through the oxidation of graphite using the Hummer’s method, in which a long oxidation time was combined with a highly effective method for purifying the reaction products. To reduce GO, after the addition of ascorbic acid, the sample was thermally annealed. To verify the structure of GO and G, the transmission electron microscopy images as well as Raman spectra of the samples were obtained. The thickness of the graphene layer was obtained by optical measurement and used to calculate the resistivity of graphene. Rama results showed the D (distorted) mode shifted towards the higher wavenumbers, whereas the G mode shifted towards the lower wavenumbers, with an increase in intensity after the reduction of graphene oxide to graphene.
 

کلیدواژه‌ها [English]

  • graphene
  • graphene oxide
  • Hummer oxidation method
  • transmission electron microscopy
  • Raman spectroscopy
  • deconvoluted
1. Y -W Son, M L Cohen, and S G Louie, Nature 444 (2006) 347.
2. M Ezawa, Eur. Phys. J. B 66 (2008) 543.
3. Physics World, http: //physicsworld. Com /cws/ article/ news /2005 /nov /09 /electrons- lose- their- mass- in- carbon- sheets.
4. R Pfeiffer, T Pichler, Y Ahm Kim, and H Kuzman, Topics Appl. Physics 111 (2008) 495.
5. A Iwan and A Chuchmała, Prog. Polym. Sci. 37 (2012) 1805.
6. A Iwan, B Szubzda, and A Sikora, “Polymer Devices with Graphene: Solar Cells and Ultracapacitors, Graphene Science Handbook”, Chapter 6: Applications and Industrialization, CRC Press Taylor & Francis, Florida (2014).
7. J Guerrero-Contrerasn and F Caballero-Briones, Materials Chemistry and Physics 153 (2015) 209.
8. B Bagheri and F Fazileh, Iranian Journal of Physics Research 11, 4 (2012) 347.
9. R Mohammadi and P Sahebsara, Iranian Journal of Physics Research 12, 4 (2013) 317.
10. K Dani, J Lee, R Sharma, A Mohite, C Galande, P Ajayan, A Dattelbaum, H Htoon, A Taylor, and R Prasankumar, Phys. Rev. B: Condens. Matt. 86 (2012) 125403.
11. S Gilbertson, G L Dakovski, T Durakiewicz, J -X Zhu, K M Dani, A D Mohite, A Dattelbaum, and G Rodriguez, J. Phys. Chem. Lett. 3 (2011) 64.
12. B Y Zhang, T Liu, B Meng, X Li, G Liang, X Hu, and Q J Wang, Nat. Commun. 4 (2013) 1811.
13. F Xia, T Mueller, Y M Lin, A Valdes-Garcia, and P Avouris, Nature Nanotechnology 4 (2009) 839.
14. T Mueller, F Xia, P Avouris, Nat. Photonics 4 (2010) 297.
15. Sidong Lei, Liehui Ge, Sina Najmaei, Antony George, Rajesh Kappera, Jun Lou, Manish Chhowalla, Hisato Yamaguchi, Gautam Gupta, Robert Vajtai, D Aditya Mohite, and M Pulickel Ajayan, ACS Nano 8, 2 (2014)1263.
16. K S Novoselov, Science 306 (2004) 666.
17. Q Murphy, M Crosser, and N Birge, “Thehniques For the Fabrication of Graphene Devices”, http://digitalcommons.linfield.edu/studsymp_sci/2011/all/12.
18. T Zhang and D Zhang, Science 34, 1 (2011) 25.
19. Y Zhu, Sh Murali, W Cai, X Li, J Suk, and J R Potts, Advanced Material, 22 (2010) 3906.
20. A Gupta, G Chen, P Joshi, S Tadigadapa, P C Eklud, Nano Lett. 6 (2006) 2267.
21. A C Ferrari, J C Meyer, V Scardaci, C Casiraghi, M Lazzeri, F Mauri, S Piscanec, D Jiang, K S Novoselov, S Roth, and A K Geim, Phys. Rev. Lett. 97 (2006) 187401.
22. R J Nemanich and S A Solin, Phys. Rev. B 20 (1979) 20392 .
23. F Tuinstra and J L Koenig J. Chem. Phys. 53 (1970) 1126.
24. M Zolfaghari, K P Jain, H S Mavi, M Balkanski, C Julien, and A Chevy, Mater. Sci. Eng. B 38 (1996) 161.
25. Eloïse Lancelot, “Perspectives on Raman Spectroscopy of Graphene”, HORIBA Scientific, 231 rue de Lille, 59650 Villeneuve d’Ascq, France.
26. M Zolfaghari, H Puladian, and F Abazari, Proceedings of the 4th International Conference on Nanostructures (ICNS4) 12-14 March, (2012), Kish Island, I.R. Iran, edited by A. Z. Moshfegh, W. Choi, S M Zakeeruddin, P. 395.
27. R Kostić, M Mirić, T Radić, M Radović, R Gajić, and Z V Popović, Acta Physıca Polonıca, A 116, 4 (2009) 718.
28. O Kapitanova, G N Panin, A N Baranov, T W Kang, Journal of the Korean Physical Society 60, 10 (2012) 1789.
29. F T Thema, M J Moloto, E d Dikio, N N Nyangiwe, L Kotsedi, M Maaza, and M Khenfouc, Journal of Chemistry 2013 (2012) 1.
30. J S Park, A Reina, R Saito, J Kong, G Dresselhaus, and M S Dresselhaus, Carbon 47 (2009) 1303.
31. Z K Wang, H S Lim, S C Ng, B Ozyilmaz, and M H Kouk, Original Research Article Carbon 46 (2009) 2133.
32. K Sato, R Saito, Y Oyama, J Jiang, L G Cançado, M A Pimenta, A Jorio, G G Samsonidze, G Dresselhaus, and M S Dresselhaus, Chem. Phys. Lett. 427 (2006) 117.
33. A Das, B Chakraborty, and A K Sood, Sci. Indian Academy of Science 31, 3 (2008) 579.
34. J Schwan, S Ulrich, V Batori, H Ehrhardt, and S R P Silva, “J. Appl. Phys. 80, 1 (1996) 440.
35. L M Malard, M A Pimenta, G Dresselhaus, and M S Dresselhaus, Phys. Rep. 473 (2009) 51.
36. K N Kudin, B Ozbas, H C Schniepp, R K Prud'homme, I A Aksay, and R Car, Nano Lett. 8 (2007) 36.
37. R Saito, M Hofmann, G Dresselhaus, A Jorio, M S Dresselhaus, Adv. Phys. 60 (2011) 413.
38. R Saito, A Jorio, Souza Filho, A G Dresselhaus, G Dresselhaus, M S Pimenta, and M A Probing, Phys. Rev. Lett. 88 (2002) 027401.
39. F Graham Smith, A Terry King, and Dan Wilkins, “Optics and Photonics: An Introduction”, John Wiley & Sons, 2nd Ed. (2007).
40. Xuefeng Wang, P Yong Chen, and D David Nolte, Optics Express 16, 26 (2008) 22105.
41. A Balandin, S Ghosh, and W Bao, Nano Lett. 8, 3 (2008) 902.

تحت نظارت وف ایرانی