Authors

Abstract

Lithium intercalation is a convenient method to prepare few-layer and single-layer MS2 (M=Mo, W) nanosheets. This method is, however, very time-consuming (few days) and it is difficult to control the reaction parameters. To overcome these drawbacks, we have proposed a method to use an Li battery set-up to significantly reduce the reaction time (few hours) and electrochemically intercalate lithium ions into MS2 layers in a controllable manner. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman spectroscopy results revealed that MoS2 and WS2 single-layer (thickness of ~ 1 nm) nanosheets with the 1T phase were prepared after intercalation in an Li battery set-up. Lateral dimensions of MoS2 and WS2 nanosheets were determined to be at about ~ 170 ± 15 and 200 ± 30 nm, respectively. The concentrations of the final solutions containing MoS2 and WS2 nanosheets were measured to be 0.012 and 0.008 mg/mL, respectively. Successful fabrication of the single-layer MS2 nanosheets using the Li battery set-up could provide an excellent opportunity to investigate the unique properties of these two-dimensional crystals for various important applications such as catalysis, solar cells, optoelectronic, etc.

Keywords

1. H Khatami, E Moomivand, B Abdollahipour, and R Mohammadkhani, Iranian J. Phys. Res. 17, 3 (2017) 485.
2. M Samadi, N Sarikhani, M Zirak, Hua Zhang, Hao-Li Zhang, and A Z Moshfegh, Nanoscale Horizon 3, 2 (2018) 90.
3. J N Coleman, et al., Science 331 (6017) (2011) 568.
4. R Aram and R Rasouli, Iranian J. Phys. Res. 16, 1 (2016) 19.
5. R Mohammadi and P Sahebsara, Iran. J. Phys. Res. 12, 4 (2013) 317.
6. F M Pesci, M S Sokolikova, C Grotta, P C Sherrell, F Reale, K Sharda, N Ni, P Palczynski, and C Mattevi, ACS Catalysis 7, 8 (2017) 4990.
7. C Han, Y Zhang, P Gao, S Chen, X Liu, Y Mi, J Zhang, Y Ma, W Jiang, and J Chang, Nano Lett. 17,n 12 (2017) 7767.
8. K F Mak, C Lee, J Hone, J Shan, and T F Heinz, Phys. Rev. Lett. 105 (2010) 13.
9. G Eda, H Yamaguchi, D Voiry, T Fujita, M Chen, and M Chhowalla, Nano Lett. 11, 12 (2011) 5111.
10. J Yang, D Voiry, S Joon Ahn, D Kang, A Y Kim, M Chhowalla, and H S Shin, Angew. Chem. Int. Ed. 52, 51 (2013) 13751.
11. D Y Chung, S K Park, Y H Chung, S H Yu, D H Lim, N Jung, H C Ham, H Y Park, Y Piao, S J Yoo, and Y E Sung, Nanoscale 6, 4 (2014) 2131.
12. L Cheng, W Huang, Q Gong, C Liu, Z Liu, Y Li, and H Dai, Angew. Chem., Int. Ed. 53, 30 (2014) 7860.
13. H Wang, Z Lu, D Kong, J Sun, T M Hymel, and Y Cui, ACS Nano 8, 5 (2014) 4940.
14. K‐G Zhou and H‐L Zhang, Small 11, 27 (2015) 3206.
16. D Voiry, M Salehi, R Silva, T Fujita, M Chen, T Asefa, V B Shenoy, G Eda, and M Chhowalla, Nano Lett. 13, 12 (2013) 6222.
17. X Sun, J Dai, Y Guo, C Wu, F Hu, J Zhao, X Zeng, and Y Xie, Nanoscale 6, 14 (2014) 8359.
18. A N Enyashin, L Y L Houben, I Popov, M Weidenbach, R Tenne, M Bar-Sadan, and G Seifert, J. Phys. Chem. C 115, 50 (2011) 24586.
19. M A L., A S Daniel, C R English, F Meng, A Forticaux, R J Hamers, and S Jin, Energy Environ. Sci. 7, 8 (2014) 2608.
20. Y Zhan, Z Liu, S Najmaei, P M Ajayan, and J Lou, Small 8, 7 (2012) 966.
21. Z Yin, H Li, H Li, L Jiang, Y Shi, Y Sun, G Lu, Q Zhang, X Chen, and H Zhang, ACS Nano 6, 1 (2012) 74.
22. P Joensen, R F Frindt, and S R Morrison, Mate. Res. Bull. 21, 4 (1986) 457.
23. L Wang, Z Xu, W Wang, and X Bai, J. Am. Chem. Soc. 136, 18 (2014) 6693.
24. D W Murphy, F J Di Salvo, G W Hull, and J V Waszczak, Inorg. Chem. 15, 1 (1976) 17.
25. J Wan, S D Lacey, J Dai, W Bao, M S Fuhrer, and L Hu, Chem. Soc. Rev. 45, 24 (2016) 6742.
26. B Z Lin, C Ding, B H Xu, Z J Chen, and Y L Chen, Mater. Res. Bull. 44, 4 (2009) 719.
27. P Joensen, E Crozier, N Alberding, and R F Frindt, J. Phys. C: Solid State Phys. 20, 26 (1987) 4043.
28. Z Zeng, Z Yin, X Huang, H Li, Q He, G Lu, F Boey, and H Zhang, Angew. Chem., Int. Ed. 50, 47 (2011) 1093.
29. E Benavente, M A Santa Ana, F Mendizabal, and G Gonzalez, Coord. Chem. Rev. 224, 1-2 (2002) 87.
30. W Zhao, Z Ghorannevis, L Chu, M Toh, C Kloc, P-H Tan, and G Eda, ACS Nano 7, 1 (2013) 791.
31. L F Mattheiss, Phys. Rev. B 8, 8 (1973) 3719.
32. L A King, W Zhao, M Chhowalla, D J Riley, and G Eda, J. Mater. Chem. A 1, 31 (2013) 8935.
33. G Eda, H Yamaguchi, D Voiry, T Fujita, M Chen, and M Chhowalla, Nano Lett. 11, 12 (2011) 5111.
34. H Li, Q Zhang, C Chong, R Yap, B K Tay, T H T Edwin, A Olivier, and D Baillargeat, Adv. Func. Mater. 22, 7 (2012) 1385.
35. D Voiry, H Yamaguchi, J Li, Ra. Silva, D CB Alves, T Fujita, M Chen, T Asefa, V B Shenoy, and G Eda, Nat. Mater. 12, 9 (2013) 850.
36. A Berkdemir, H R Gutierrez, A R Botello-Mendez, N Perea-Lopez, A Laura Elias, C-I Chia, B Wang, V H Crespi, F Lopez-Urias, J-C Charlier, H Terrones, and M Terrones, Sci. Rep. 3 (2013) 1755.
37. K M McCreary, A T Hanbicki, G G Jernigan, J C Culbertson, and B T Jonker, Sci. Rep. 6 (2016) 19159.
38. C Lee, H Yan, L E Brus, T F Heinz, J Hone, and S Ryu, ACS Nano 4, 5 (2010) 2695.
39. H Li, Q. Zhang, C C R Yap, B K Tay, T H T Edwin, A Olivier, and D Baillargeat, Adv. Funct. Mater. 22, 7 (2012) 1385.
40. K Gołasa, M Grzeszczyk, R Bozek, P Leszczyński, A Wysmołek, M Potemski, and A Babiński, Solid State Commun 197 (2014) 53.

ارتقاء امنیت وب با وف ایرانی