Authors

Abstract

The interaction of ionizing radiations with living tissues could result in simple and complex single- and double-strand breaks in the cell DNAs, due to the physical and chemical processes that such radiations initiate. Monte Carlo simulation of the interaction between radiations and DNA renders valuable information about damage types, which can be very useful in cancer therapy and radiation protection. In this study, in order to calculate the initial DNA damage caused by the primary electron beam and the produced secondary particles, Geant4-DNA has been employed to simulate the physical, physico-chemical, and chemical interactions. Using the simulation results for the direct electron interactions and indirect hydroxyl radical reactions with the DNA, the probability of different types of breaks in the cell DNAs as well as the distribution of the breaks as a function of the deposited energy have been investigated.
 

Keywords

1. H Nikjoo and S Uehara, “Track Structure Studies of Biological Systems”, Marcel Dekker (2004). 2. T Helleday et al., Nat. Rev. Cancer 8 (2008) 193. 3. S P Jackson and J Bartek, Nature 461 (2009) 1071. 4. H Nikjoo, D Emfietzoglou, T Liamsuwan, R Taleei, D Liljequist, and S Uehara, Rep. Prog. Phys. 79 (2016) 116601. 5. M D Santos, C Villagrasa, I Clairand, and S Incerti, Prog. in Nuc. Sci. and Tech. 4 (2014) 449. 6. W Friedland, P Jacob, and P Kundrat, Radiat. Prot. Dosimetry 143 (2010) 542. 7. D T Goodhead, Int. J. Radiat. Biol. 65 (1994) 7. 8. D Frankenberg, M Frankenberg-Schwager, M Bloecher, and R Harbich, Radiat. Res. 88 (1981) 524. 9. C M de Lara, M A Hill, D Papworth, and P O’Neill, Radiat. Res. 155 (2001) 440. 10. H Nikjoo, S Uehara, and D Emfietzoglou, “Interaction of Radiation with Matter”, CRC Press (2012). 11. A Ferrari, P R Sala, A Fasso, and J Ranft, “FLUKA: a Multi-Particle Transport Code”, CERN (2005). 12. S Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506 (2003) 250. 13. J Goorley et al., Nucl. Technol. 180 (2012) 298. 14. S Uehara, Nucl. Instrum. Methods Phys. Res. B 14 (1986) 559. 15. W E Wilson and H Nikjoo, Radiat. Environ. Biophys. 38 (1999) 97. 16. J M Fernández-Varea, G González-Muñoz, M E Galassi, K Wiklund, B K Lind, A Ahnesjö, and N Tilly, Int. J. Radiat. Biol. 88 (2012) 66. 17. W Friedland, M Dingfelder, P Kundrát, and P Jacob, Mut. Res./Fund. and Mol. Mech. of Mutagen. 711 (2011) 28. 18. R Taleei, P M Girard, K Sankaranarayanan, and H Nikjoo, Radiat. Res. 179 (2013) 540. 19. H Nikjoo, P O’Neill, D Goodhead, and M Terrisol, Int. J. Radiat. Biol. 71 (1997) 467. 20. H Nikjoo, C E Bolton, R Watanabe, M Terrissol, P O’Neill, and D T Goodhead, Radiat. Prot. Dosim. 99 (2002) 77. 21. M Mokari, M H Alamatsaz, A A Babaei-Brojeny, H Moeini, and R Taleei, Biomed. Phys. Eng. Express 4 (2018) 065009. 22. V A Semenenko and R D Stewart, Radiat. Res. 164 (2005) 194. 23. M B Hahn, S Meyer, M A Schroter, H Seitz, H J Kunte, T Solomun, and H Sturm, Phys. Chem. Chem. Phys. 19 (2017) 1798. 24. M B Hahn, S Meyer, H J Kunte, T Solomun, and H Sturm, Phys. Rev. E 95 (2017) 052419. 25. S Incerti et al., Med. Phys. 37 (2010) 4692. 26. M A Bernal et al., Phys. Med. 31 (2015) 861. 27. C Champion, S Incerti, H Aouchiche, and D Oubaziz, Radiat. Phys. Chem. 78 (2009) 745. 28. C D Jonah, M S Matheson, J R Miller, and E J Hart, J. of Phys. Chem. 80 (1976) 1267. 29. T Sumiyoshi and M Katayama, Chem. Letters (1982) 1887. 30. H Nikjoo, P O’Neill, M Terrissol, and D T Goodhead, Radiat. Environ. Biophys. 38 (1999) 31. 31. H Nikjoo, P O’Neill, W E Wilson, and D T Goodhead, Radiat. Res. 156 (2001) 577. 32. S Meylan, U Vimont, S Incerti, I Clairand, and C Villagrasa, Comp. Phys. Communications 204 (2016) 159. 33. R E Dickerson, H R Drew, B N Conner, R M Wing, A V Fratini, and M L Kopka, Science 216 (1982) 475. 34. A Kellerer, “Fandamental of Microdosimetry”, in The Dosimetry of Ionizing Radiation, Academic Press (1975). 35. H Nikjoo, D T Goodhead, D E Charlton, and H G Paretzke, Phys. in Med. and Biol. 34 (1989) 691. 36. H Nikjoo and D T Goodhead, Phys. in Med. and Biol. 36 (1991) 229. 37. ICRU Report 36, “Microdosimetry”, UAS (1983). 38. D T Goodhead, “Relationship of microdosimetric Techniques to Applications in Biological Systems”, in “The Dosimetry of Ionising Radiation”, Academic Press (1987). 39. H Nikjoo, D E Goodhead, and D E Charlton, Int. J. Radiat. Biol. 60 (1991) 739. 40. D Charlton, H Nikjoo, and J L Humm, Int. J. Radiat. Biol. 56 (1989) 1. 41. S Meylan, S Incerti, M Karamitros, N Tang, M Bueno, I Clairand, and C Villagrasa, Sci. Reports 7 (2017) 11923. 42. J R Milligan, C C L Wu, J N N Ng, J A Aguiler, and J F Ward, Radiat. Res. 146 (1996) 510. 43. R Roots and S Okada, Radiat. Res. 64 (1975) 306. 44. B Aydogan, W E Bolch, S G Swarts, J E Turne, and D T Marshal, Radiat. Res. 169 (2008) 223. 45. J R Milligan, J A Aguilera, and J F Ward, Radiat. Res. 133 (1993) 158. 46. R Watanabe, S Rahmanian, and H Nikjoo, Radiat. Res. 183 (2014) 1. 47. M Mokari, M H Alamatsaz, H Moeini, and R Taleei, Phys. Med. Biol. 63 (2018) 175003.

تحت نظارت وف ایرانی