Authors

Abstract

Tungsten oxide (WO3) thin layers were prepared on Fluorine Tin Oxide glass by electrodeposition method. WO3 layers were evaluated as a function of the deposition time (480s, 600s, 660s and 720s).SEM results show that by increasing the deposition time, gradual decrement in cracks on their surface will occur. The electrochromic properties of the WO3 thin layers were investigated in a nonaqueous LiClO4–PC electrolyte by means of optical transmittance, cyclic voltammogram (CV) measurements. The WO3 thin layer with deposition time 600s exhibits a noticeable electrochromic performance with a variation of transmittance up to 58.26% at 633nm. The CV measurements reveal that the WO3 thin layer with deposition time 600s has high electrochemical reaction activity and reversibility due to its highly porous structure.

Keywords

1. P M S Monk, R J Mortimer, and D R Rosseinsky, “Handbook of Electrochromism: Principles and Applications”, Publisher: Wiley-VCH (1995). 2. A Abareshi and H Haratizadeh, Iranian J. Phys. Res. 16, 3 (2016) 47. 3. LYang, D Ge, J Zhao, Y Ding, X Kong, and Y Li, Sol. Energy Mater. Sol. Cells 100 (2012) 251. 4. C Y Kim; S G Cho, and T Y Lim, Sol. Energy Mater. Sol. Cells 93 (2009) 2056. 5. S Balaji, Y Djaoued, A Sébastien Albert, Z Richard Ferguson, Ralf Brüning, Bao-Lian Su, J. Mater Sci. 44 (2009) 6608. 6. D S Dalavia, M J Suryavanshia, D S Patila, S S Malia, A V Moholkarb, S S Kalagia,S A Vanalkara, S R Kangb, J H Kimb, and P S Patila, Applied Surface Science 257 (2011) 2647. 7. C G Granqvist, “Handbook of Inorganic Electrochromic Materials”, Amsterdam, New York: Elsevier, (1995). 8. B Yang, P R F Barnes, W Bertram, and V Luca, J. Mater. Chem. 17 (2007) 2722. 9. M Deepa, A K Srivastava, S N Sharma, Govind, and S M Shivaprasad, Appl. Surf. Sci. 254 (2008) 2342. 10. M Giannouli and G Leftheriotis, Sol. Energy Mater. Sol. Cells 95 (2011) 1932. 11. A H Yan, C S Xie, D W Zeng, S Z Cai, and H Y Li, J. Alloys Compd. 495 (2010) 88. 12. J Zhang, X L Wang, X H Xia, C D Gu, Z J Zhao, and J P Tu, Electrochim. Acta 55 (2010) 6953. 13. R Deshpande, S H Lee, A H Mahan, P A Parilla, K M Jones, A G Norman, B To, J L Blackburn, S Mitra, and A C Dillon, Solid State Ion 178 (2007) 895. 14. H S Shim, J W Kim, Y E Sung, and W B Kim, Sol. Energy Mater. Sol. Cells, 93 (2009) 2062. 15. B B Cao, J J Chen, X J Tang, and W L Zhou, J. Mater. Chem. 19 (2009) 2323. 16. J Zhang, X L Wang, X H Xia, C D Gu, and J P Tu, Sol. Energy Mater. Sol. Cells 95 (2011) 2107. 17. Y S Lin, S S Wu, and T H Tsai, Sol. Energy Mater. Sol. Cells 94 (2010) 2283. 18. Chia-Ching Liao, Fu-Rong Chen, Ji-Jung Kai, Sol. Energy Mater. Sol. Cells 91 (2007) 1282. 19. M Deepa, D P Singh, S M Ssivaprasad, and S A Agnihotry, Current Applied Physics 7 (2007) 220. 20. C Ching Liao, F Chen, and J kai, Sol. Energy Mater. Sol. Cells 90 (2006) 1147. 21. A J More, R S Patil, D S Dalavi, M P Suryawanshi, V V Burungale, J H Kim, and P S Patil, Journal of Electronic Materials 46 (2016) 974. 22. T Pauporté, J. Electrochem. Soc. 149 (2002) C539. 23. M Deep, A K Srivastava, S N Sharma, Govind, and S M Shivaprasad, Applied Surface Science 254 (2008) 2342.

ارتقاء امنیت وب با وف ایرانی