Document Type : Original Article

Authors

1 Department of Physics, Shahid Beheshti University, Velenjak, Tehran, Iran

2 Ibn Sina lab. Department of Physics, Shahid Beheshti University, Velenjak, Tehran, Iran

Abstract

The geometrical and topological measures enable us to characterize stochastic field systematically, and  the relation between weighted and unweighted N-point functions is provided. One of such relations is given by the bias factor. In this paper, based on peak statistics, we study the bias factor for stochastic and anisotropic fields. Accordingly, we present the analytical description of local and linear bias factor. Doing simulations, we examine the validation of  the derived analytical relation. Our results show that at high threshold level and large spatial separation, there exists a good agreement between the analytical calculation and numerical computations.
 

Keywords

  1. T Matsubara, The Astrophysical Journal 584, 1 (2003) 1.

  2. J M Bardeen, et al., Astrophys. J. 304.FERMILAB-PUB-85-148- A (1985) 15.

  3. F Heavens, Alan, and K Ravi, Sheth. Monthly Notices of the Royal Astronomical Society 310, 4 (1999) 1062.

  4. S Codis, C C Pichon, D Pogosyan, F Bernardeau, and TMatsubara, MNRAS. (2013) 435.

  5. P Pápai, and R K Sheth,Monthly Notices of the Royal Astronomical Society 429, 2 (2012) 1133.

  6. C Li, Y P Jing, A Faltenbacher, and J Wang, The Astrophysical Journal Letters 770, 1 (2013) L12.

  7. D J Schwarz, C J Copi, D Huterer, and G D Starkman, Classical and Quantum Gravity 33, 18 (2016) 184001.

  8. R M Bradley, J. Vac. Sci. Technol. A 6 (1988) 2390.

  9. G Nezhadhaghighi, S M S Movahed, T Yasseri, and S M Vaez Allaei, Journal of Applied Physics 122 (2017) 085302.


10. Y P Zhao, H. N Yang, G C Wang, and T M Lu, Phys. Rev. B 57 (1998) 1922.


11. Y P Zhao, G C Wang, and T M Lu, Phys. Rev. B 58 (1998) 7300.


12. R Kree, T Yasseri, and A K Hartmann, Nucl. Ins. Meth.in Phys. B 267 (2009) 1407.


13. S O Riceed and N Wax, “Statistical Properties of Random Noise Currents”, Selected Papers on Noise and Stochastic Processes (New York:Dover) (1954(.


14. W Feller, “An Introduction to Probability Theory and Its Applications”, 2 (1965) (New York: Wiley).


15. H D Politzer and M B Wise, ApJ 285 (1984) L1.


16. N Kaiser, ApJ 284 (1984) L9


17. J Bardeen, J R Bond, N Kaiser, and Szalay, Acta Phys. Hung. 62 FERMILAB-PUB-86-023-A (1986) 263.


18. T Mastsubara, The Astrophysical Journal 525, 2 (1999) 543.


19. M S Taqqu, “Zeitschrift Für Wahrscheinlichkeitstheorie und verwandte Gebiete”, 40, 3 (1977) 203.


20. S D Landy and A S Szalay, Astrophysical Journal, Part 1, 412, 1 (1964) 64.


21. V Desjacques, J Donghuli, and S Fabian, Physics Reports 733 (2018) 1


22. A Slosar, C Hirata, U Seljak, S Ho, and N Padmanabhan, Journal of Cosmology and Astroparticle Physics 08 (2008) 031.


23. S Baghram, M H Namjoo, and H Firouzjahi, Journal of Cosmology and Astroparticle Physics 08 (2013) 48.


24. V Desjacques, Physical Review D 78, 10 (2008) 103503.


25. S Fabian, J Donghui, and V Desjacques, PRD 88 (2013) 023515.


26. M Davis, G Efstathiou, C S Frenk, and S D M White, Astrophysical Journal. 292, 1 (1999) 371.


27. M Houjun, F Bosch, and S White, “Galaxy Formation and Evolution”, Cambridge University Press (2010).

تحت نظارت وف ایرانی